cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181315 G.f. A(x) satisfies A(x) = Product_{n>=1} (1 + x^n*A(x)^n).

Original entry on oeis.org

1, 1, 2, 6, 19, 64, 227, 832, 3125, 11970, 46579, 183614, 731688, 2942673, 11928707, 48688888, 199932987, 825379993, 3423614756, 14261439594, 59635806865, 250241613688, 1053380320889, 4446989542144, 18823433444211, 79871578901283
Offset: 0

Views

Author

Paul D. Hanna, Oct 16 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 227*x^6 +...
The g.f. A = A(x) satisfies
log(A) = x*A/(1-x^2*A^2) + (x^2/2)*A^2/(1-x^4*A^4) + (x^3/3)*A^3/(1-x^6*A^6) +...
		

Crossrefs

Programs

  • Maple
    nmax:=25: kmax:=nmax: for n from 1 to nmax+1 do A(x):=add(a(k)*x^k, k=0..kmax-1): A(x) := product((1 + x^k*A(x)^k),k=1..kmax+1): a(n-1):=coeff(A(x),x,n-1): od: seq(a(n),n=0..nmax); # Johannes W. Meijer, Jul 04 2011
  • Mathematica
    InverseSeries[x QPochhammer[x, x^2] + O[x]^30][[3]] (* Vladimir Reshetnikov, Nov 21 2016 *)
  • PARI
    {a(n)=polcoeff(1/x*serreverse(x/prod(k=1,n+1,1+x^k+x*O(x^n))),n)}
    
  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (x*A+x*O(x^n))^m/(1-(x*A)^(2*m))/m))); polcoeff(A, n)}

Formula

G.f.: A(x) = Sum_{n>=0} A000009(n)*x^n*A(x)^n, where A000009(n) is the number of partitions of n into distinct parts.
G.f.: A(x) = (1/x)*Series_Reversion[x^(1/24)*eta(x)/eta(x^2)] (cf. A081362).
G.f. satisfies A(x) = exp( Sum_{n>=1} (x^n/n)*A(x)^n/(1 - (x*A(x))^(2*n)) ).
a(n) ~ c * d^n / n^(3/2), where d = A270914 = 4.50247674761735448773859393270078440676312875609162163346454... and c = A366018 = 0.482420439587319764659364391266849418507665645926542970519109122... - Vaclav Kotesovec, Aug 21 2018