cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181317 Triangle in which n-th row lists all partitions of n, in the order of increasing smallest numbers of prime signatures.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 4, 1, 1, 1, 3, 2, 2, 3, 2, 1, 1, 2
Offset: 1

Views

Author

Alois P. Heinz, Jan 26 2011

Keywords

Comments

The parts of each partition are listed in decreasing order.
Differs from A080577 at a(48) and from A036037 at a(56). A181087 uses the same order for all partitions.

Examples

			[3,1,1,1] and [2,2,2] are both partitions of 6, the smallest numbers having these prime signatures are 2^3*3^1*5^1*7^1=840 and 2^2*3^2*5^2=900, thus [3,1,1,1] < [2,2,2] in this order.
Triangle begins:
  [1];
  [2], [1,1];
  [3], [2,1], [1,1,1];
  [4], [3,1], [2,2], [2,1,1], [1,1,1,1];
  [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1];
  [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [3,1,1,1], [2,2,2];
  ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) local b, ll;  # gives all parts of partitions of row n
      b:= proc(n,i,l)
            if n<0 then
          elif n=0 then ll:= ll, [mul(ithprime(t)^l[t], t=1..nops(l)), l]
          elif i=0 then
          else b(n-i, i, [l[], i]), b(n, i-1, l)
            fi
      end;
      ll:= NULL; b(n,n,[]);
      map(h-> h[2][], sort([ll], (x,y)-> x[1]
    				
  • Mathematica
    f[P_] := Times @@ (Prime[Range[Length[P]]]^P);
    row[n_] := SortBy[IntegerPartitions[n], f];
    Array[row, 7] // Flatten (* Jean-François Alcover, Feb 16 2021 *)