A181317 Triangle in which n-th row lists all partitions of n, in the order of increasing smallest numbers of prime signatures.
1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 3, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 4, 1, 1, 1, 3, 2, 2, 3, 2, 1, 1, 2
Offset: 1
Examples
[3,1,1,1] and [2,2,2] are both partitions of 6, the smallest numbers having these prime signatures are 2^3*3^1*5^1*7^1=840 and 2^2*3^2*5^2=900, thus [3,1,1,1] < [2,2,2] in this order. Triangle begins: [1]; [2], [1,1]; [3], [2,1], [1,1,1]; [4], [3,1], [2,2], [2,1,1], [1,1,1,1]; [5], [4,1], [3,2], [3,1,1], [2,2,1], [2,1,1,1], [1,1,1,1,1]; [6], [5,1], [4,2], [3,3], [4,1,1], [3,2,1], [3,1,1,1], [2,2,2]; ...
Links
- Alois P. Heinz, Rows n = 1..19, flattened
Programs
-
Maple
a:= proc(n) local b, ll; # gives all parts of partitions of row n b:= proc(n,i,l) if n<0 then elif n=0 then ll:= ll, [mul(ithprime(t)^l[t], t=1..nops(l)), l] elif i=0 then else b(n-i, i, [l[], i]), b(n, i-1, l) fi end; ll:= NULL; b(n,n,[]); map(h-> h[2][], sort([ll], (x,y)-> x[1]
-
Mathematica
f[P_] := Times @@ (Prime[Range[Length[P]]]^P); row[n_] := SortBy[IntegerPartitions[n], f]; Array[row, 7] // Flatten (* Jean-François Alcover, Feb 16 2021 *)
Comments