cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181411 a(n) = Sum_{k=0..n} C(n,k)*sigma(n+k) for n>=1.

Original entry on oeis.org

4, 18, 55, 150, 379, 915, 2146, 4934, 11080, 24833, 54476, 119091, 259432, 556700, 1195135, 2561094, 5428597, 11488866, 24350993, 51296325, 107427025, 225330244, 472762497, 985966379, 2049357779, 4267962522, 8887535983, 18431783744
Offset: 1

Views

Author

Paul D. Hanna, Oct 19 2010

Keywords

Examples

			L.g.f.: L(x) = 4*x + 18*x^2/2 + 55*x^3/3 + 150*x^4/4 + 379*x^5/5 +...
Exponentiation yields the g.f. of A181410:
exp(L(x)) = 1 + 4*x + 17*x^2 + 65*x^3 + 234*x^4 + 804*x^5 +...
The initial terms begin:
a(1) = 1*1 + 1*3 = 4;
a(2) = 1*3 + 2*4 + 1*7 = 18;
a(3) = 1*4 + 3*7 + 3*6 + 1*12 = 55;
a(4) = 1*7 + 4*6 + 6*12 + 4*8 + 1*15 = 150; ...
		

Crossrefs

Cf. A181410.

Programs

  • Mathematica
    Table[Sum[Binomial[n,k] * DivisorSigma[1,n+k],{k,0,n}],{n,1,30}] (* Vaclav Kotesovec, Oct 05 2020 *)
  • PARI
    {a(n)=sum(k=0,n,binomial(m,k)*sigma(n+k))}

Formula

Equals the logarithmic derivative of A181410.
Conjecture: a(n) ~ c * n * 2^n, where c = Pi^2/4 = A091476. - Vaclav Kotesovec, Oct 05 2020