cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181429 a(n)= the smallest number such that a(n)^2+1=p*A002144(n), p prime.

Original entry on oeis.org

3, 5, 30, 12, 80, 9, 30, 11, 46, 34, 22, 414, 76, 15, 100, 44, 28, 80, 19, 274, 380, 794, 144, 64, 530, 456, 60, 334, 724, 25, 114, 526, 136, 42, 104, 274, 334, 1584, 266, 29, 254, 516, 566, 48, 810, 286, 52, 2110, 86, 1130, 516, 726, 35, 194, 154, 504, 106, 58, 4036, 566, 96, 380
Offset: 1

Views

Author

Michel Lagneau, Jan 29 2011

Keywords

Examples

			a(1) = 3 because 3^2+1 = 2*A002144(1) = 2*5 ;
a(2) = 5 because 5^2+1 = 2*A002144(2) = 2*13 ;
a(3) = 30 because 30^2+1 = 53*A002144(3)  = 53*17;
a(4) = 12 because 12^2+1 = 5*A002144(4) = 5*29.
		

Crossrefs

Cf. A002144.

Programs

  • Maple
    with(numtheory):nn:=10000:T:=array(1..10000):k:=2:T[1]:=2:for x from 1 to nn
      do: p:=4*x+1:if type(p, prime)=true then T[k]:=p:k:=k+1:else fi:od:for n from
      2 to 100 do: id:=0:for p from 1 to k while(id=0) do:x:=T[n]*T[p]-1:y:=sqrt(x):if
      y=floor(y)then id:=1:printf(`%d, `,y):else fi:od:od: