cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181434 First column in matrix inverse of a mixed convolution of A052542.

Original entry on oeis.org

1, -3, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1
Offset: 1

Views

Author

Mats Granvik, Oct 20 2010

Keywords

Comments

It appears that except for the second term, the sequence is identical to the Möbius function.
Explicit numeric calculation confirms this up to at least n=1085. - R. J. Mathar, Oct 06 2017

Crossrefs

Programs

  • Maple
    b := proc(n)
        option remember;
        local c;
        c := 2;
        if n <= 2 then
            n;
        elif n = 3 then
            c^2 ;
        else
            c*procname(n-1)+procname(n-2) ;
        end if;
    end proc:
    A := proc(n,k)
        if n >= k then
            b(n-k+1) ;
        else
            0 ;
        end if;
    end proc:
    B := proc(n,k)
        if modp(n,k) = 0 then
            1;
        else
            0;
        end if;
    end proc:
    AB := proc(n,k)
        option remember;
        add( A(n,j)*B(j,k),j=1..n) ;
    end proc:
    ABinv := proc(n,k)
        option remember;
        if k > n then
            0;
        elif k = n then
            1;
        else
            -add( AB(n,j)*procname(j,k),j=k..n-1) ;
        end if;
    end proc:
    A181434 := proc(n)
        ABinv(n,1) ;
    end proc:
    for n from 1 do
        printf("%d %d\n",n,ABinv(n,1)) ;
    end do: # R. J. Mathar, Oct 06 2017
  • Mathematica
    Clear[t, n, k, nn, b, A, c]; nn = 77; c = 2; b[0] = 1; b[1] = 1; b[n_] := b[n] = c*b[n - 1] + b[n - 2]; t[n_, 1] = If[n >= 1, b[n], 0]; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]; MatrixForm[A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]; Inverse[A][[All, 1]] (* Mats Granvik, Sep 15 2017 *)
  • PARI
    A181434(n)=if(n==2,-3,moebius(n)) \\ M. F. Hasler, Sep 15 2017. - This program seems to be based on a formula that is so far only conjectural? - Antti Karttunen, Oct 06 2017

Formula

From Mats Granvik, Sep 16 2017: (Start)
a(n) as the matrix inverse of a mixed convolution: Let c = 2 and let the sequence b be defined by the recurrence: b(1) = 1, b(2) = c, b(3) = c^2; for n >= 4, b(n) = c*b(n-1) + b(n-2), so b(n) = A052542(n-1), and let the lower triangular matrix A be: If n >= k then A(n,k) = b(n - k + 1) else A(n,k) = 0, and let B be the lower triangular matrix A051731. Then the matrix inverse (A.B)^-1 will have a(n) as its first column.
The matrix product T = A.B can be defined as follows: Let c = 2 and the sequence b be defined by the recurrence b(0) = 1, b(1) = 1; for b >= 2, b(n) = c*b(n - 1) + b(n - 2), so b(n) = A001333(n); and let T be the lower triangular matrix defined by the recurrence: T(n, 1) = If n >= 1 then T(n, 1) = b(n) else T(n, 1) = 0; for k >= 2, T(n, k) = If n >= k then (Sum_{i=1..k-1} T(n - i, k - 1) - T(n - i, k)) else 0. (Then the matrix inverse of T will have a(n) as its first column.)
(End)