cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181477 a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=5.

Original entry on oeis.org

1, 5, 25, 85, 275, 751, 1955, 4615, 10460, 22220, 45628, 89420, 170340, 313140, 562020, 980628, 1676370, 2800410, 4596290, 7399930, 11732006, 18297950, 28155910, 42716750, 64037980, 94823756, 138922300, 201325900, 288988100
Offset: 0

Views

Author

Wouter Meeussen, Oct 24 2010

Keywords

Comments

a(n-1,k) is conjectured to also be the count of monomials (or terms) in the Schur polynomials of k variables and degree n, summed over all partitions of n in at most k parts (zero-padded to length k).

Examples

			a(3)=85 since the Schur polynomial of 5 variables and degree 4 starts off as x[1]*x[2]*x[3]*x[4] + x[1]*x[2]*x[3]*x[5] + ... + x[4]*x[5]^3 + x[5]^4. The exponents collect to the padded partitions of 4 as 5*p(1) + 40*p(2) + 30*p(3) + 150*p(4) + 50*p(5) where p(1) is the lexicographically first padded partition of 4: {4,0,0,0}, a coded form of monomials x[i]^4, and p(5) stands for {1,1,1,1}, coding x[i]x[j]x[k]x[l] with all indices different.
		

Crossrefs

For k=2 (two variables): A002620, k=3: A038163, k=4: A054498 k=6: A181478, k=7: A181479, k=8: A181480.
Column k=5 of A210391. - Alois P. Heinz, Mar 22 2012

Programs

  • Mathematica
    Tr[toz/@(Function[q,PadRight[q,k]]/@ (TransposePartition/@ Partitions[n,k]))/. w[arg__] -> 1 ]; with toz[p_]:=Block[{a,q,e,w}, u1=Expand[q Together[Expand[schur[p]]] +q a]/. Plus-> List ; u2=u1/. Times->w /. q->Sequence[]/. w[i_Integer, r__]-> i w[r] /. x[]^(e:1) ->e ; u3=Plus@@ u2/. w[arg__]:> Reverse@ Sort@ w[arg] /. w[a]->0 ]; and schur[p_]:=Block[{le=Length[p],n=Tr[p]}, Together[Expand[Factor[Det[Outer[ #2^#1&,p+le-Range[le] , Array[x,le]]]]/Factor[Det[Outer[ #2^#1&,Range[le-1,0,-1] , Array[x,le]]]] ]] ]