cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A222739 Partial sums of the first 10^n terms in A181482.

Original entry on oeis.org

76, 57256, 55722556, 55572225556, 55557222255556, 55555722222555556, 55555572222225555556, 55555557222222255555556, 55555555722222222555555556, 55555555572222222225555555556, 55555555557222222222255555555556, 55555555555722222222222555555555556
Offset: 1

Views

Author

R. J. Cano, Mar 07 2013

Keywords

Comments

Indeed: a(n) is the sum of 2*10^(2n-1)+1 and the palindrome built by repetition of the digits 2 and 5 such that it recalls the number 525.
Let x = 10^n, y = floor(x/3), and B(n) = Sum_{k<=10^n} binomial(floor(k/3),2).
6*B(n) differs from a(n) by (x*(x+1)*(1+(2*x+1)/3))/4-3*y*(3*y+1).

Examples

			When n=1, 10^n is 10. By looking at A181482 for its first 10 terms we have the sum: 1+3+0+4+9+3+10+18+9+19, then a(1)=76.
		

Crossrefs

Programs

  • PARI
    repdigit(n,k)=(n!=0)*floor((10/9)*n*10^(k-1));
    palindrome(n)=repdigit(5,n)*10^(2*n-1)+repdigit(2,n-1)*10^n+repdigit(5,n);
    a(n)=palindrome(n)+(1+2*10^(2*n-1));
    
  • PARI
    Vec(-4*x*(250000*x^3-157875*x^2+6795*x-19)/((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Oct 31 2015

Formula

a(n) = Sum_{k<=10^n} A181482(k).
From Colin Barker, Oct 31 2015: (Start)
a(n) = 1111*a(n-1)-112110*a(n-2)+1111000*a(n-3)-1000000*a(n-4) for n>4.
G.f.: -4*x*(250000*x^3-157875*x^2+6795*x-19) / ((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)).
(End)

A213203 The sum of the first n! integers, with every n-th integer taken as negative.

Original entry on oeis.org

-1, -1, 3, 132, 4260, 172440, 9069480, 609618240, 51209444160, 5267273961600, 651825357321600, 95601055094899200, 16405141092269529600, 3257166195621552614400, 741005309513165913216000
Offset: 1

Views

Author

R. J. Cano, Mar 01 2013

Keywords

Examples

			For a(3)=3, 3! is 6 then the sum of the first 6 integers taking each 3rd integer as negative is: 1+2-3+4+5-6 = 3.
For a(4)=132, 4! is 24 then the sum of the first 24 integers taking each 4th integer as negative is: 1+2+3-4+5+6+7-8+9+10+11-12+13+14+15-16+17+18+19-20+21+22+23-24 = 132.
		

Crossrefs

Programs

  • PARI
    a(n)={my(y=(n-1)!);((n*y)*((n-2)*y-1))\2;}

Formula

a(n) = n * (n-1)! * ((n-2)*(n-1)! - 1)/2.
Conjecture: a(n) + (-n^2-n-11)*a(n-1) + (n^3+7*n^2-13*n+39)*a(n-2) - 2*(n-2)*(4*n^2-2*n-15)*a(n-3) + 20*(n-2)*(n-3)*(n-4)*a(n-4) = 0. - R. J. Mathar, Mar 21 2013

A243106 a(n) = Sum_{k=1..n} (-1)^isprime(k)*10^k.

Original entry on oeis.org

10, -90, -1090, 8910, -91090, 908910, -9091090, 90908910, 1090908910, 11090908910, -88909091090, 911090908910, -9088909091090, 90911090908910, 1090911090908910, 11090911090908910, -88909088909091090, 911090911090908910, -9088909088909091090
Offset: 1

Views

Author

R. J. Cano, Aug 19 2014

Keywords

Comments

Alternative definition: a(n,x)=T(x,1) for a dichromate or Tutte-Whitney polynomial in which the matrix t[i,j] is defined as t[i,j]=Delta(i,j)*((-1)^isprime(i)) and "Delta" is the Kronecker Delta function. - Michel Marcus, Aug 19 2014
If 10 is replaced by 1, then this becomes A097454. If it is replaced by 2, one gets A242002. Choosing powers of the base b=10, as done here, allows one to easily read off the equivalent for any other base b > 4, by simply replacing digits 8,9 with b-2,b-1 (when terms are written in base b). [Comment extended by M. F. Hasler, Aug 20 2014]
There are 2^n ways of taking the partial sum of the first n powers of b=10 if exponent zero is excluded and the signs can be assigned arbitrarily. Conjecture: When expressed in base b, the absolute value for any of these terms only contains digits belonging to {0,1,b-2,b-1}; here {0,1,8,9}.

Examples

			n=1 is not prime x^1 = (10)^1 = 10, therefore a(1)=10;
n=2 is prime and x^2 = (10)^2 = 100, taking it negative, a(2) = 10 - 100 = -90;
n=3 also is prime, x^3 = 1000, and we have a(3) = 10 - 100 - 1000 = -1090;
n=4 is not prime, so a(4) = 10 - 100 - 1000 + 10000 = 8910;
n=5 is prime, then a(5) = 10 - 100 - 1000 + 10000 - 100000 = -91090;
Examples of analysis for the concatenation patterns among the terms can be found at the "Additional Information" link.
		

Crossrefs

Cf. A097454.
The same kind of base-independent behavior: A215940, A217626.
Partial sums of alternating series: A181482, A222739, A213203.

Programs

  • Mathematica
    Table[Sum[ (-1)^Boole@ PrimeQ@ k*10^k, {k, n}], {n, 19}] (* Michael De Vlieger, Jan 03 2016 *)
  • PARI
    ap(n, x)={my(s); forprime(p=1, n, s+=x^p); s}
    a=(n, x=10)->(x^(n+1)-1)/(x-1)-2*ap(n, x)-1;
    
  • PARI
    Delta=(i, j)->(i==j); /* Kronecker's Delta function */
    t=n->matrix(n, n, i, j, Delta(i, j)*((-1)^isprime(i))); /* coeffs t[i, j] */
    /* Tutte polynomial over n */
    T(n, x, y)={my(t0=t(n)); sum(i=1, n, sum(j=1, n, t0[i, j]*(x^i)*(y^j)))};
    a=(n, x=10)->T(n, x, 1);
    
  • PARI
    A243106(n,b=10)=sum(k=1,n,(-1)^isprime(k)*b^k) \\ M. F. Hasler, Aug 20 2014

Formula

a(n,x) = Sum_{k=1..n} (-1)^isprime(k)*(x^k), for x=10 in decimal.

Extensions

Definition simplified by N. J. A. Sloane, Aug 19 2014
Definition further simplified and more terms from M. F. Hasler, Aug 20 2014
Showing 1-3 of 3 results.