A222739
Partial sums of the first 10^n terms in A181482.
Original entry on oeis.org
76, 57256, 55722556, 55572225556, 55557222255556, 55555722222555556, 55555572222225555556, 55555557222222255555556, 55555555722222222555555556, 55555555572222222225555555556, 55555555557222222222255555555556, 55555555555722222222222555555555556
Offset: 1
When n=1, 10^n is 10. By looking at A181482 for its first 10 terms we have the sum: 1+3+0+4+9+3+10+18+9+19, then a(1)=76.
-
repdigit(n,k)=(n!=0)*floor((10/9)*n*10^(k-1));
palindrome(n)=repdigit(5,n)*10^(2*n-1)+repdigit(2,n-1)*10^n+repdigit(5,n);
a(n)=palindrome(n)+(1+2*10^(2*n-1));
-
Vec(-4*x*(250000*x^3-157875*x^2+6795*x-19)/((x-1)*(10*x-1)*(100*x-1)*(1000*x-1)) + O(x^100)) \\ Colin Barker, Oct 31 2015
A213203
The sum of the first n! integers, with every n-th integer taken as negative.
Original entry on oeis.org
-1, -1, 3, 132, 4260, 172440, 9069480, 609618240, 51209444160, 5267273961600, 651825357321600, 95601055094899200, 16405141092269529600, 3257166195621552614400, 741005309513165913216000
Offset: 1
For a(3)=3, 3! is 6 then the sum of the first 6 integers taking each 3rd integer as negative is: 1+2-3+4+5-6 = 3.
For a(4)=132, 4! is 24 then the sum of the first 24 integers taking each 4th integer as negative is: 1+2+3-4+5+6+7-8+9+10+11-12+13+14+15-16+17+18+19-20+21+22+23-24 = 132.
A243106
a(n) = Sum_{k=1..n} (-1)^isprime(k)*10^k.
Original entry on oeis.org
10, -90, -1090, 8910, -91090, 908910, -9091090, 90908910, 1090908910, 11090908910, -88909091090, 911090908910, -9088909091090, 90911090908910, 1090911090908910, 11090911090908910, -88909088909091090, 911090911090908910, -9088909088909091090
Offset: 1
n=1 is not prime x^1 = (10)^1 = 10, therefore a(1)=10;
n=2 is prime and x^2 = (10)^2 = 100, taking it negative, a(2) = 10 - 100 = -90;
n=3 also is prime, x^3 = 1000, and we have a(3) = 10 - 100 - 1000 = -1090;
n=4 is not prime, so a(4) = 10 - 100 - 1000 + 10000 = 8910;
n=5 is prime, then a(5) = 10 - 100 - 1000 + 10000 - 100000 = -91090;
Examples of analysis for the concatenation patterns among the terms can be found at the "Additional Information" link.
-
Table[Sum[ (-1)^Boole@ PrimeQ@ k*10^k, {k, n}], {n, 19}] (* Michael De Vlieger, Jan 03 2016 *)
-
ap(n, x)={my(s); forprime(p=1, n, s+=x^p); s}
a=(n, x=10)->(x^(n+1)-1)/(x-1)-2*ap(n, x)-1;
-
Delta=(i, j)->(i==j); /* Kronecker's Delta function */
t=n->matrix(n, n, i, j, Delta(i, j)*((-1)^isprime(i))); /* coeffs t[i, j] */
/* Tutte polynomial over n */
T(n, x, y)={my(t0=t(n)); sum(i=1, n, sum(j=1, n, t0[i, j]*(x^i)*(y^j)))};
a=(n, x=10)->T(n, x, 1);
-
A243106(n,b=10)=sum(k=1,n,(-1)^isprime(k)*b^k) \\ M. F. Hasler, Aug 20 2014
Definition further simplified and more terms from
M. F. Hasler, Aug 20 2014
Showing 1-3 of 3 results.
Comments