A180303 a(n) = smallest number such that 3^n-2^a(n) is prime, or -1 if no such number exists.
0, 1, 2, 1, 1, 1, 3, 3, 1, 7, 4, 11, 6, 3, 4, 9, 9, 5, 6, 3, 2, 1, 7, 35, 12, 29, 10, 13, 6, 11, 2, 21, 8, 27, 11, -1, 1, 17, 10, -1, 1, 37, 8, 9, 16, 61, 23, 23, 17, 27, 4, 7, 2, 7, 7, 39, 58, 81, 30, 17, 60, 3, 8, 13, 18, -1, 20, 101, 4, 73, 27, 17, 2, 17, 19, 13, 41, 53, 44, 111, 34, 13
Offset: 1
Keywords
Examples
3^1-2^0 = 2, so a(1)=0; no other terms are zero. 3^11-2^1, 3^11-2^2, 3^11-2^3 are all nonprime, but 3^11-2^4 = 177131 which is prime so a(11) = 4. a(36) is -1 (the placeholder value) because nonprimes are obtained when any power of two is subtracted from 3^36.
Crossrefs
Cf. A013604.
Comments