A181506 TNP(n,k) triangle read by rows. TNP(n,k) is the number of triangular-number partitions of n with k parts.
1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 1, 0, 1
Offset: 1
Examples
The triangle begins 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 1 0 1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0 1 0 1 2 1 1 1 1 1 0 1 0 1 For example, row 12 is 0 1 2 1 1 1 1 1 0 1 0 1. We have TNP(12, 1) = 0 because 12 is not a triangular number. We have TNP(12, 2) = 1 because 6+6 is the unique triangular-number partition of 12 with 2 parts. And we have TNP(12, 3) = 2 because 3+3+6 and 1+1+10 are the 2 triangular-number partitions of 12 with 3 parts.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..1275
- John P. McSorley and Alan H. Schoen, Rhombic tilings of (n,k)-ovals, (n, k, lambda)-cyclic difference sets, and related topics, Discrete Math., 313 (2013), 129-154.
Crossrefs
Programs
-
PARI
T(n)={[Vecrev(p/y) | p<-Vec(-1 + 1/prod(k=1, (sqrtint(8*n+1)-1)\2, 1 - y*x^binomial(k+1,2) + O(x*x^n)))]} { my(A=T(12)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Sep 26 2019
Formula
G.f.: 1 / Product_{k>=1} (1 - z*x^T(k)) where T(k) = A000217(k). - Joerg Arndt, Aug 10 2015
Comments