cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181518 a(n) is the number for which 2^A181516(n)||(2*a(n))!

Original entry on oeis.org

2, 4, 7, 11, 13, 16, 22, 25, 28, 35, 37, 38, 41, 47, 50, 52, 56, 59, 64, 67, 70, 76, 88, 93, 97, 98, 100, 117, 122, 133, 137, 140, 143, 148, 158, 171, 176, 179, 182, 186, 193, 196, 200, 203, 213, 218, 223, 227, 233, 234, 236, 242, 247, 248, 253, 262, 280, 290, 299
Offset: 1

Views

Author

Vladimir Shevelev, Oct 26 2010

Keywords

Comments

Numbers m such that Sum_{k >= 0} floor(m/2^k) is a prime. - Clark Kimberling, Feb 13 2025

Crossrefs

Programs

  • Maple
    isA011371 := proc(n) option remember; local k,a; for k from 0 do a := A011371(k) ; if a > n then return false; elif a = n then return true; end if; end do: end proc:
    A181516 := proc(n) option remember; local a; if n = 1 then 3; else for a from procname(n-1)+1 do if isprime(a) then if isA011371(a) then return a; end if; end if; end do; end if; end proc:
    A181518 := proc(n) for m from 1 do if A011371(m) = A181516(n) then return m/2 ; end if; end do: end proc: # R. J. Mathar, Nov 04 2010
  • Mathematica
    f[n_] := Sum[Floor[n/2^k], {k, 0, Floor[Log[2, n]]}]  (* A005187 *)
    Select[Range[400], PrimeQ[f[#]] &] (* Clark Kimberling, Feb 13 2025 *)

Extensions

Corrected (88 inserted, 129 replaced by 179) and extended beyond 227 by R. J. Mathar, Nov 04 2010

A181520 2*A181518(n)-A181516(n).

Original entry on oeis.org

1, 1, 3, 3, 3, 1, 3, 3, 3, 3, 3, 3, 3, 5, 3, 3, 3, 5, 1, 3, 3, 3, 3, 5, 3, 3, 3, 5, 5, 3, 3, 3, 5, 3, 5, 5, 3, 5, 5, 5, 3, 3, 3, 5, 5, 5, 7, 5, 5, 5, 5, 5, 7, 5, 7, 3, 3, 3, 5, 5, 5, 7, 3, 3, 5, 5, 5, 5, 3, 5, 5, 7, 5, 5, 7, 7, 7, 3, 3, 3, 7, 3, 5, 5, 7, 5, 7, 7, 7, 5, 7, 7, 7, 9, 3, 3, 3, 5, 3, 3, 3, 3, 5, 5, 3
Offset: 1

Views

Author

Vladimir Shevelev, Oct 26 2010

Keywords

Extensions

More terms from R. J. Mathar, Nov 04 2010
Showing 1-2 of 2 results.