cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A181605 Twin primes ending in 7.

Original entry on oeis.org

7, 17, 107, 137, 197, 227, 347, 617, 827, 857, 1277, 1427, 1487, 1607, 1667, 1697, 1787, 1877, 1997, 2027, 2087, 2237, 2267, 2657, 2687, 3167, 3257, 3467, 3527, 3557, 3767, 3917, 4127, 4157, 4217, 4337, 4517, 4547, 4637, 4787, 4967, 5417, 5477, 5657
Offset: 1

Views

Author

Omar E. Pol, Nov 01 2010

Keywords

Comments

First disagrees with A092340 at n=26: A092340 contains 2707, but this sequence doesn't. Is this a subsequence of A092340? - Nathaniel Johnston, Jun 25 2011
Yes, it is a subsequence of A092340: see link. - Robert Israel, Apr 13 2021

Crossrefs

Programs

  • Maple
    [7, op(select(t -> isprime(t) and isprime(t+2), [seq(i,i=17..10000,30)]))]; # Robert Israel, Apr 13 2021
  • Mathematica
    Select[Prime@ Range@ 800, Mod[ #, 10] == 7 && (PrimeQ[ # - 2] || PrimeQ[ # + 2]) &] (* Robert G. Wilson v, Nov 06 2010 *)

Formula

A001097 INTERSECT A030432. - R. J. Mathar, Nov 03 2010

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, Nov 03 2010

A181603 Twin primes ending in 1.

Original entry on oeis.org

11, 31, 41, 61, 71, 101, 151, 181, 191, 241, 271, 281, 311, 421, 431, 461, 521, 571, 601, 641, 661, 811, 821, 881, 1021, 1031, 1051, 1061, 1091, 1151, 1231, 1291, 1301, 1321, 1451, 1481, 1621, 1721, 1871, 1931, 1951, 2081, 2111, 2131, 2141, 2311, 2341, 2381
Offset: 1

Views

Author

Omar E. Pol, Nov 01 2010

Keywords

Comments

These are twin primes == 1 (mod 30) or == 11 (mod 30) or == 21 (mod 30). In the first case they cannot be lower twin primes because the upper ones would be == 3 (mod 30) and divisible by 3. In the second case they cannot be upper twin primes because the lower ones would be == 9 (mod 30) and divisible by 3. The last case is excluded because that implies they are divisible by 3. In summary the upper twin primes in here are given by A282326, the lower twin primes in here by A282321. - R. J. Mathar, Feb 14 2017

Crossrefs

Programs

  • Maple
    isA181603 := proc(p)
        if isprime(p) and (isprime(p-2) or isprime(p+2)) then
            if modp(p,10) = 1 then
                true;
            else
                false;
            end if ;
        else
            false;
        end if;
    end proc:
    for n from 1 to 1000 do
        if isA181603(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Feb 14 2017
  • Mathematica
    Select[Prime@ Range@ 360, Mod[ #, 10] == 1 && (PrimeQ[ # - 2] || PrimeQ[ # + 2]) &] (* Robert G. Wilson v, Nov 06 2010 *)
    Select[Flatten[Select[Partition[Prime[Range[400]],2,1],#[[2]]-#[[1]] == 2&]],Mod[#,10]==1&] (* Harvey P. Dale, Oct 24 2021 *)

Extensions

More terms from Robert G. Wilson v, Nov 06 2010

A181604 Twin primes ending in 3.

Original entry on oeis.org

3, 13, 43, 73, 103, 193, 283, 313, 433, 463, 523, 643, 823, 883, 1033, 1063, 1093, 1153, 1303, 1453, 1483, 1723, 1873, 1933, 2083, 2113, 2143, 2383, 2593, 2713, 2803, 3253, 3373, 3463, 3583, 3673, 3823, 3853, 4003, 4093, 4243, 4273, 4423, 4483, 4723, 4933
Offset: 1

Views

Author

Omar E. Pol, Nov 01 2010

Keywords

Crossrefs

Programs

  • Maple
    isA181604 := proc(p)
        if isprime(p) and (isprime(p-2) or isprime(p+2)) then
            if modp(p,10) = 3 then
                true;
            else
                false;
            end if ;
        else
            false;
        end if;
    end proc: # R. J. Mathar, Feb 14 2017
  • Mathematica
    Select[Prime@Range@700, Mod[ #, 10] == 3 && (PrimeQ[ # - 2] || PrimeQ[ # + 2]) &] (* Robert G. Wilson v, Nov 06 2010 *)

Extensions

More terms from Robert G. Wilson v, Nov 06 2010

A247089 Initial members of prime quadruples (p, p+2, p+30, p+32).

Original entry on oeis.org

11, 29, 41, 71, 107, 149, 197, 239, 281, 431, 569, 827, 1019, 1031, 1061, 1289, 1451, 1667, 1997, 2081, 2111, 2237, 2309, 2657, 2969, 3299, 3329, 3359, 3527, 3821, 4019, 4127, 4229, 4241, 4517, 5849, 6269, 6659, 6761, 7457, 7559, 8597
Offset: 1

Views

Author

Karl V. Keller, Jr., Jan 10 2015

Keywords

Comments

Primes p such that (p, p+2) and (p+30, p+32) are twin prime pairs.
This sequence is a subsequence of A001359 (lesser of twin primes).
The subset of terms ending in 1 in this sequence is a subsequence of A132232 (primes, 11 mod 30).
The subset of terms ending in 7 in this sequence is a subsequence of A141860 (primes, 2 mod 15).
The subset of terms ending in 9 in this sequence is a subsequence of A132236 (primes, 29 mod 30).

Examples

			For n=11, the numbers 11, 13, 41, 43, are primes.
		

Crossrefs

Cf. A077800 (twin primes), A001359, A132232, A132236, A141860, A181603 (twins, end 1), A181605 (twins, end 7), A181606 (twins, end 9).

Programs

  • Mathematica
    a247089[n_] := Select[Prime@ Range@ n, And[PrimeQ[# + 2], PrimeQ[# + 30], PrimeQ[# + 32]] &]; a247089[1100] (* Michael De Vlieger, Jan 11 2015 *)
  • Python
    from sympy import isprime
    for n in range(1,10000001,2):
      if isprime(n) and isprime(n+2) and isprime(n+30) and isprime(n+32): print(n,end=', ')
Showing 1-4 of 4 results.