cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181613 Triangle T(n,m) of the coefficients JacobiNC(x,y) = sum_{n>0} sum_{m=0..n-1} (-1)^m* T(n,m) *x^(2*n) *y^(2*m)/(2*n)!.

Original entry on oeis.org

1, 5, 4, 61, 76, 16, 1385, 2424, 1104, 64, 50521, 113672, 79728, 16832, 256, 2702765, 7432604, 7052528, 2586112, 264448, 1024, 199360981, 647923188, 775638816, 408850432, 85975296, 4205568, 4096, 19391512145, 72718170544, 105138354912, 72490884224, 23551644928, 2939602944, 67162112, 16384
Offset: 1

Views

Author

R. J. Mathar, Jan 30 2011

Keywords

Comments

The column m=0 is apparently A000364.

Examples

			The triangle starts in row n=1 as:
1;
5, 4;
61, 76, 16;
1385, 2424, 1104, 64;
50521, 113672, 79728, 16832, 256;
		

References

  • M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover. Section 16.22.
  • H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 374.

Crossrefs

Programs

  • Maple
    A181613 := proc(n,m) JacobiNC(z,k) ; coeftayl(%,z=0,2*n) ; (-1)^m*coeftayl(%,k=0,2*m)*(2*n)! ; end proc:
    seq( seq(A181613(n,m),m=0..n-1),n=1..10) ;
  • Mathematica
    nmax = 8; se = Series[JacobiNC[x, y], {x, 0, 2*nmax}]; t[n_, m_] := Coefficient[se, x, 2*n]*(2*n)! // Coefficient[#, y, m]& // Abs; Table[t[n, m], {n, 1, nmax}, {m, 0, n-1}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)

Formula

From Peter Bala, Aug 23 2011: (Start)
The Taylor expansion of the Jacobian elliptic function cn(u,k) begins
cn(u,k) = 1-u^2/2!+(1+4*k^2)*u^4/4!-(1+44*k^2+16*k^4)*u^6/6!+... - see A060627.
The Taylor expansion of the reciprocal function 1/cn(u,k) can be obtained directly from this by using Jacobi's imaginary transformation
1/cn(u,k) = cn(i*u,sqrt(1-k^2)) [Abramowitz and Stegun, 16.20] to yield
1/cn(u,k) = 1+u^2/2!+(5-4*k^2)*u^4/4!+(61-76*k^2+16*k^4)*u^6/6!+....
The coefficient polynomials R(2*n,k) of this expansion can be calculated as follows (apply [Dominici, Theorem 4.1]):
Let f(x) = sqrt(k^2-cos^2(x)). Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0. Then R(2*n,k) = D^(2*n)[f](0).
See A145271 for the coefficients in the expansion of D^n[f](x) in powers of f(x).
(End)
G.f. 1/(1 - x/(1 - 2^2*(1 - k^2)*x/(1 - 3^2*x/(1 - 4^2*(1 - k^2)*x/(1 - 5^2*x/(1 - ...)))))) = 1 + x + (5 - 4*k^2)*x^2 + (61 - 76*k^2 + 16*k^4)*x^3 + ... (see Wall, 94.19, p. 374).