A181622 Sequence starting with 1 such that the sum of any two distinct terms has three distinct prime factors.
1, 29, 41, 281, 401, 1089, 1585, 2289, 4629, 27293, 74873, 965813, 2536781, 4479197, 36730306, 150318056, 4527046433
Offset: 1
Keywords
Examples
Each of the three pairwise sums of the subset {29, 41, 281} is the product of three distinct prime factors: {2*5*7, 2*5*31, 2*7*23}.
Programs
-
Maple
with(numtheory):nn:=200000:T:=array(1..nn): U:=array(1..nn): for p from 1 to nn do: T[p]:=p:U[p]:=1:od:for u from 1 to 20 do: k:=1+u:for n from u+1 to nn do:s:=T[n]+T[u]:s1:=nops(factorset(s)):s2:=bigomega(s):if s1=3 and s2=3 then U[k]:=T[n]:k:=k+1:else fi:od:for i from 1 to nn do:T[i]:=U[i]:od:od:for j from 1 to 30 do:printf(`%d, `, T[j]):od:
Extensions
a(12)-a(17) from Donovan Johnson, Feb 14 2011
Comments