cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181655 Expansion of (1+2x-x^3+x^4)/(1-4x^2+3x^4).

Original entry on oeis.org

1, 2, 4, 7, 14, 22, 44, 67, 134, 202, 404, 607, 1214, 1822, 3644, 5467, 10934, 16402, 32804, 49207, 98414, 147622, 295244, 442867, 885734, 1328602, 2657204, 3985807, 7971614, 11957422, 23914844, 35872267, 71744534, 107616802, 215233604
Offset: 0

Views

Author

Paul Barry, Nov 03 2010

Keywords

Comments

Row sums of A181654.

Crossrefs

Cf. A060816, A198643 (bisections).

Programs

  • Mathematica
    CoefficientList[Series[(1+2x-x^3+x^4)/(1-4x^2+3x^4),{x,0,40}],x] (* or *) Join[{1},LinearRecurrence[{0,4,0,-3},{2,4,7,14},40]] (* Harvey P. Dale, Jan 11 2012 *)
  • PARI
    A181655(n)=if(bitand(n,1), 3^(n\2)*5\2, n, 3^(n\2-1)*5-1, 1) \\ M. F. Hasler, Apr 06 2019

Formula

G.f.: (1+2*x-x^3+x^4)/((1-x^2)*(1-3*x^2)).
a(n) = 5*A038754(n+1)/6 - A040001(n)/2. - R. J. Mathar, May 14 2016
a(2n-1) = A060816(n-1), a(2n) = A198643(n-1); n >= 1. a(n+1) = 2*a(n) if n is odd. - M. F. Hasler, Apr 06 2019

A181653 Generalized (conditional) Riordan array with k-th column generated by x^k*(1+x) if k mod 2 = 0, x^k*(1+x+x^2) otherwise.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1
Offset: 0

Views

Author

Paul Barry, Nov 03 2010

Keywords

Comments

Row sums are A174296. A181654 is an eigentriangle.

Examples

			Triangle begins
  1;
  1, 1;
  0, 1, 1;
  0, 1, 1, 1;
  0, 0, 0, 1, 1;
  0, 0, 0, 1, 1, 1;
  0, 0, 0, 0, 0, 1, 1;
  0, 0, 0, 0, 0, 1, 1, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 1;
  0, 0, 0, 0, 0, 0, 0, 1, 1, 1;
  0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1;
Production matrix begins
   1,  1;
  -1,  0,  1;
   1,  1,  0,  1;
   0, -1, -1,  0,  1;
   0,  1,  1,  1,  0,  1;
   0,  0,  0, -1, -1,  0,  1;
   0,  0,  0,  1,  1,  1,  0,  1;
   0,  0,  0,  0,  0, -1, -1,  0,  1;
   0,  0,  0,  0,  0,  1,  1,  1,  0,  1;
   0,  0,  0,  0,  0,  0,  0, -1, -1,  0,  1;
		
Showing 1-2 of 2 results.