cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181789 Pandigital biperiod squares: pandigital squares whose digits repeat twice in order.

Original entry on oeis.org

183673469387755102041183673469387755102041, 326530612244897959184326530612244897959184, 734693877551020408164734693877551020408164, 132231404958677685950413223140496132231404958677685950413223140496
Offset: 1

Views

Author

William Rex Marshall, Nov 12 2010

Keywords

Comments

Ondrejka asks in Problem 1130(b) (see reference) what the smallest biperiod square is in which the ten decimal digits occur equally often (an equipandigital biperiod square), but it remains unknown whether any such square even exists.

References

  • R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.

Crossrefs

Cf. A092118 (biperiod squares), A181790, A181791.

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A181789_gen(): # generator of terms
        for j in count(9):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(0,a,all_roots=True)):
                if a*b <= (m:=k**2) < a*(a-1) and len(set(str(m//a))) == 10:
                        yield m
    A181789_list = list(islice(A181789_gen(),20)) # Chai Wah Wu, Mar 23 2024

A181790 Numbers k such that k concatenated with itself is a pandigital biperiod square.

Original entry on oeis.org

183673469387755102041, 326530612244897959184, 734693877551020408164, 132231404958677685950413223140496, 206611570247933884297520661157025, 297520661157024793388429752066116, 404958677685950413223140495867769
Offset: 1

Views

Author

William Rex Marshall, Nov 12 2010

Keywords

References

  • R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.

Crossrefs

Programs

  • Python
    from itertools import count, islice
    from sympy import sqrt_mod
    def A181790_gen(): # generator of terms
        for j in count(9):
            b = 10**j
            a = b*10+1
            for k in sorted(sqrt_mod(0,a,all_roots=True)):
                if a*b <= k**2 < a*(a-1) and len(set(str(m:=k**2//a))) == 10:
                        yield m
    A181790_list = list(islice(A181790_gen(),20)) # Chai Wah Wu, Mar 23 2024
Showing 1-2 of 2 results.