A181834 The number of primes <= n that are strongly prime to n.
0, 0, 0, 0, 0, 1, 0, 1, 2, 2, 1, 2, 2, 3, 3, 2, 3, 5, 4, 5, 5, 4, 4, 6, 6, 6, 6, 6, 6, 7, 6, 7, 9, 8, 7, 7, 7, 9, 9, 8, 8, 10, 9, 10, 11, 10, 10, 12, 12, 12, 12, 11, 11, 13, 13, 12, 12, 12, 12, 14, 13, 14, 15, 14, 15, 15, 13, 15, 16, 15, 14, 16, 17
Offset: 0
Keywords
Examples
a(11) = card(primes in {3, 4, 6, 7, 8, 9}) = card({3, 7}) = 2.
Links
- Peter Luschny, Strong coprimality.
Programs
-
Maple
with(numtheory): Primes := n -> select(k->isprime(k),{$1..n}): StrongCoprimes := n -> select(k->igcd(k,n)=1,{$1..n}) minus divisors(n-1): StrongCoprimePrimes := n -> Primes(n) intersect StrongCoprimes(n): A181834 := n -> nops(StrongCoprimePrimes(n)):
-
Mathematica
strongCoprimeQ[k_, n_] := PrimeQ[k] && CoprimeQ[n, k] && !Divisible[n-1, k]; a[n_] := Select[Range[n], strongCoprimeQ[#, n]&] // Length; Table[a[n], {n, 0, 72}] (* Jean-François Alcover, Jul 23 2013 *)
Comments