cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A181830 The number of positive integers <= n that are strongly prime to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 2, 2, 2, 1, 6, 2, 6, 4, 4, 4, 11, 4, 12, 6, 6, 6, 18, 6, 12, 9, 14, 8, 22, 6, 22, 14, 14, 12, 20, 8, 27, 16, 20, 12, 32, 10, 34, 18, 18, 16, 42, 14, 32, 17, 26, 20, 46, 16, 32, 20, 28, 24, 54, 14, 48, 28, 32, 26, 41, 16
Offset: 0

Views

Author

Peter Luschny, Nov 17 2010

Keywords

Comments

k is strongly prime to n if and only if k is relatively prime to n and k does not divide n - 1.
It is conjectured (see Scroggs link) that a(n) is also the number of cardboard braids that work with n slots. - Matthew Scroggs, Sep 23 2017
a(n) is odd if and only if n is in A002522 but n <> 2. - Robert Israel, Jun 20 2018

Examples

			a(11) = card({1,2,3,4,5,6,7,8,9,10} - {1,2,5,10}) = card({3,4,6,7,8,9}) = 6.
		

Crossrefs

Programs

  • Mathematica
    a[0]=0; a[1]=0; a[n_ /; n > 1] := Select[Range[n], CoprimeQ[#, n] && !Divisible[n-1, #] &] // Length; Table[a[n], {n, 0, 66}] (* Jean-François Alcover, Jun 26 2013 *)
  • PARI
    a(n)=if(n<2, 0, eulerphi(n)-numdiv(n-1));
    for (i=0, 66, print1(a(i), ", ")) \\ Michel Marcus, May 22 2017
    
  • SageMath
    def isstrongprimeto(k, n): return not(k.divides(n - 1)) and gcd(k, n) == 1
    print([sum(int(isstrongprimeto(k, n)) for k in srange(n+1)) for n in srange(67)])
    # Peter Luschny, Dec 03 2023

Formula

a(n) = phi(n) - tau(n-1) for n > 1, where phi(n) = A000010(n) and tau(n) = A000005(n).

Extensions

Corrected a(1) to 0 by Peter Luschny, Dec 03 2023

A181832 The product of the positive integers <= n that are strongly prime to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 20, 15, 35, 7, 36288, 35, 277200, 1485, 4576, 9009, 20432412000, 5005, 1097800704000, 459459, 5912192, 2834325, 2322315553259520000, 1616615, 124672148625024, 4865140665
Offset: 0

Views

Author

Peter Luschny, Nov 17 2010

Keywords

Comments

k is strongly prime to n iff k is relatively prime to n and k does not divide n-1.
a(n) = A001783(n) / A007955(n-1) if n > 0 and a(0) = 1.
For 0 we have the empty product, giving 1. - Daniel Forgues, Aug 03 2012
From Robert G. Wilson v, Aug 04 2012: (Start)
Records appear at positions 0, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, ....
Except for 0 and 9, all records appear at prime positions and beginning with the sixth term, are == 0 (mod 100).
There are some primes which are not records: 2, 3, 61, 73, 109, 151, 181, 193, 229, 241, 271, 313, 349, 421, 433, 463, ....
Anti-records appear at positions 6, 10, 12, 14, 15, 18, 20, 24, 30, 36, 42, 48, 60, 66, 70, 78, 84, 90, 96, ..., and their values are odd. (End)

Examples

			a(11) = 3 * 4 * 6 * 7 * 8 * 9 = 36288.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    StrongCoprimes := n -> select(k->igcd(k,n)=1,{$1..n}) minus divisors(n-1):
    A181832 := proc(n) local i; mul(i,i=StrongCoprimes(n)) end:
    coprimorial := proc(n) local i; mul(i,i=select(k->igcd(k,n)=1,[$1..n])) end:
    divisorial  := proc(n) local i; mul(i,i=divisors(n)) end:
    A181832a := n -> `if`(n=0,1,coprimorial(n)/divisorial(n-1)):
  • Mathematica
    f[n_] := Times @@ Select[ Range@ n, GCD[#, n] == 1 && Mod[n - 1, #] != 0 &]; Array[f, 27, 0] (* Robert G. Wilson v, Aug 03 2012 *)

A181831 The sum of positive integers <= n that are strongly prime to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 9, 8, 12, 7, 37, 12, 50, 28, 36, 40, 105, 36, 132, 60, 84, 78, 217, 72, 190, 125, 201, 128, 350, 90, 393, 224, 267, 224, 366, 168, 575, 304, 408, 264, 730, 210, 807, 396, 456, 428, 1009, 336, 905, 443
Offset: 0

Views

Author

Peter Luschny, Nov 17 2010

Keywords

Comments

k is strongly prime to n iff k is relatively prime to n and k does not divide n-1.
a(n) = A023896(n) - A000203(n-1) if n > 1 and a(n) = 0 for n = 0,1.

Examples

			a(11) = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 - 1 - 2 - 5 - 10 = 37.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A181831 := n -> `if`(n<2,0,n*phi(n)/2-sigma(n-1)):
  • Mathematica
    Join[{0,0},Table[Total[Select[Range[n],CoprimeQ[#,n]&&!Divisible[n-1,#]&]],{n,2,50}]] (* Harvey P. Dale, Apr 09 2013 *)
  • SageMath
    def isstrongprimeto(k, n): return not(k.divides(n-1)) and gcd(k, n) == 1
    def a(n): return sum(k for k in srange(n + 1) if isstrongprimeto(k, n))
    print([a(n) for n in range(51)])
    # Alternative:
    def a(n): return 0 if n < 2 else n*euler_phi(n)//2 - sigma(n - 1, 1)
    # Peter Luschny, Dec 03 2023

Extensions

a(0) corrected by Peter Luschny, Dec 03 2023

A181836 The product of primes <= n that are strongly prime to n.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 5, 15, 35, 7, 21, 35, 385, 165, 143, 1001, 15015, 5005, 85085, 51051, 46189, 20995, 440895, 1616615, 7436429, 1716099, 2860165, 5311735, 15935205, 7436429, 215656441, 3234846615
Offset: 0

Views

Author

Peter Luschny, Nov 17 2010

Keywords

Comments

k is strongly prime to n iff k is relatively prime to n and k does not divide n-1.

Examples

			a(11) = 3 * 7 = 21.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    Primes := n -> select(k->isprime(k),{$1..n}):
    StrongCoprimes := n -> select(k->igcd(k,n)=1,{$1..n}) minus divisors(n-1):
    StrongCoprimePrimes := n -> Primes(n) intersect StrongCoprimes(n):
    A181836 := proc(n) local i; mul(i,i=StrongCoprimePrimes(n)) end:
  • Mathematica
    a[n_] := Times @@ Select[Range[2, n], PrimeQ[#] && CoprimeQ[#, n] && !Divisible[n-1, #] &]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Jun 28 2013 *)

A181835 The sum of the primes <= n that are strongly prime to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 0, 5, 8, 12, 7, 10, 12, 23, 19, 24, 31, 39, 36, 53, 51, 60, 54, 64, 72, 90, 80, 82, 88, 91, 90, 119, 127, 144, 127, 129, 143, 155, 139, 160, 174, 190, 185, 226, 225, 260, 248, 256
Offset: 0

Views

Author

Peter Luschny, Nov 17 2010

Keywords

Comments

k is strongly prime to n iff k is relatively prime to n and k does not divide n-1.

Examples

			a(11) = 3 + 7 = 10.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    Primes := n -> select(k->isprime(k),{$1..n}):
    StrongCoprimes := n -> select(k->igcd(k,n)=1,{$1..n}) minus divisors(n-1):
    StrongCoprimePrimes := n -> Primes(n) intersect StrongCoprimes(n):
    A181835 := proc(n) local i; add(i,i=StrongCoprimePrimes(n)) end:
  • Mathematica
    a[n_] := Select[Range[2, n], PrimeQ[#] && CoprimeQ[#, n] && !Divisible[n-1, #] &] // Total; Table[a[n], {n, 0, 47}] (* Jean-François Alcover, Jun 28 2013 *)

A181833 The number of positive integers <= n that are not strongly prime to n.

Original entry on oeis.org

0, 0, 2, 3, 4, 4, 6, 5, 6, 7, 9, 5, 10, 7, 10, 11, 12, 6, 14, 7, 14, 15, 16, 5, 18, 13, 17, 13, 20, 7, 24, 9, 18, 19, 22, 15, 28, 10, 22, 19, 28, 9, 32, 9, 26, 27, 30, 5, 34, 17, 33, 25, 32, 7, 38, 23, 36, 29, 34, 5, 46
Offset: 0

Views

Author

Peter Luschny, Nov 17 2010

Keywords

Comments

k is strongly prime to n iff k is relatively prime to n and k does not divide n-1.
a(n) = n - phi(n) + tau(n-1) if n > 0 and a(0) = 0.
Here phi(n) = A000010(n) and tau(n) = A000005(n).

Examples

			a(11) = 11 - card({3,4,6,7,8,9}) = 5.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    A181833 := n -> `if`(n=0,0,n-phi(n)+tau(n-1));
    A181833a := n -> n - A181830(n);
  • Mathematica
    a[n_] := Select[Range[n], Not[CoprimeQ[#, n] && !Divisible[n-1, #]] &] // Length; a[1] = 0; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Jun 28 2013 *)

A322937 Triangular array in which the n-th row lists the primes strongly prime to n (in ascending order). For the empty rows n = 1, 2, 3, 4 and 6 we set by convention 0.

Original entry on oeis.org

0, 0, 0, 0, 3, 0, 5, 3, 5, 5, 7, 7, 3, 7, 5, 7, 5, 7, 11, 3, 5, 11, 11, 13, 7, 11, 13, 3, 5, 7, 11, 13, 5, 7, 11, 13, 5, 7, 11, 13, 17, 3, 7, 11, 13, 17, 11, 13, 17, 19, 5, 13, 17, 19, 3, 5, 7, 13, 17, 19, 5, 7, 11, 13, 17, 19, 7, 11, 13, 17, 19, 23
Offset: 1

Views

Author

Peter Luschny, Apr 01 2019

Keywords

Comments

A number k is strongly prime to n if and only if k <= n is prime to n and k does not divide n-1. See the link to 'Strong Coprimality'. (Our terminology follows the plea of Knuth, Graham and Patashnik in Concrete Mathematics, p. 115.)

Examples

			The length of row n is A181834(n). The triangular array starts:
[1] {}
[2] {}
[3] {}
[4] {}
[5] {3}
[6] {}
[7] {5}
[8] {3, 5}
[9] {5, 7}
[10] {7}
[11] {3, 7}
[12] {5, 7}
[13] {5, 7, 11}
[14] {3, 5, 11}
[15] {11, 13}
[16] {7, 11, 13}
[17] {3, 5, 7, 11, 13}
[18] {5, 7, 11, 13}
[19] {5, 7, 11, 13, 17}
[20] {3, 7, 11, 13, 17}
		

Crossrefs

Programs

  • Maple
    Primes := n -> select(isprime, {$1..n}):
    StrongCoprimes := n -> select(k->igcd(k, n)=1, {$1..n}) minus numtheory:-divisors(n-1):
    StrongCoprimePrimes := n -> Primes(n) intersect StrongCoprimes(n):
    A322937row := proc(n) if n in {1, 2, 3, 4, 6} then return 0 else op(StrongCoprimePrimes(n)) fi end:
    seq(A322937row(n), n=1..25);
  • Mathematica
    Table[Select[Prime@ Range@ PrimePi@ n, And[GCD[#, n] == 1, Mod[n - 1, #] != 0] &] /. {} -> {0}, {n, 25}] // Flatten (* Michael De Vlieger, Apr 01 2019 *)
  • Sage
    def primes_primeto(n):
        return [p for p in prime_range(n) if gcd(p, n) == 1]
    def primes_strongly_primeto(n):
        return [p for p in set(primes_primeto(n)) - set((n-1).divisors())]
    def A322937row(n):
        if n in [1, 2, 3, 4, 6]: return [0]
        return sorted(primes_strongly_primeto(n))
    for n in (1..25): print(A322937row(n))

A069354 Lowest base with simple divisibility test for n primes; smallest B such that omega(B) + omega(B-1) = n.

Original entry on oeis.org

2, 3, 6, 15, 66, 210, 715, 7315, 38571, 254541, 728365, 11243155, 58524466, 812646121, 5163068911, 58720148851, 555409903686, 4339149420606, 69322940121436, 490005293940085, 5819629108725510, 76622240600506315
Offset: 1

Views

Author

Robert Munafo, Nov 19 2002

Keywords

Comments

Indices of record values of primepi(n) - A181834(n) (the number of primes <= n which are not strongly prime to n). - Peter Luschny, Mar 17 2013
As pointed out by Don Reble on the SeqFan list, one has a(n) = A059958(n)+1 at least up to a(18), since so far A001221(m*(m+1)) = n (and not ">") for m = A059958(n). - M. F. Hasler, Jan 15 2014
10^13 < a(19) <= 69322940121436. - Giovanni Resta, Mar 24 2020

Examples

			a(4) = 15 because in base 15 you can test for divisibility by 4 different primes (3 and 5 directly, 2 and 7 by "casting out 14's")
		

Crossrefs

Programs

  • Maple
    A069354_list := proc(n) local i, L, Max; Max := 1; L := NULL;
    for i from 2 to n do
       if nops(numtheory[factorset](i*(i-1))) = Max
       then Max := Max + 1; L := L,i fi;
    od;
    L end:  # Peter Luschny, Nov 12 2010

Formula

a(n) = A059958(n) + 1 for 0 < n < 19. - Robert G. Wilson v, Feb 18 2014

Extensions

More terms added using data from A059958 (see there for credits) by M. F. Hasler, Jan 15 2014
a(19)-a(21) from Michael S. Branicky, Feb 11 2023
a(22) from Michael S. Branicky, Feb 23 2023

A322936 Triangular array in which the n-th row lists the numbers strongly prime to n (in ascending order). For the empty rows n = 2, 3, 4 and 6 we set by convention 0.

Original entry on oeis.org

1, 0, 0, 0, 3, 0, 4, 5, 3, 5, 5, 7, 7, 3, 4, 6, 7, 8, 9, 5, 7, 5, 7, 8, 9, 10, 11, 3, 5, 9, 11, 4, 8, 11, 13, 7, 9, 11, 13, 3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 5, 7, 11, 13, 4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17, 3, 7, 9, 11, 13, 17, 8, 11, 13, 16, 17, 19
Offset: 1

Views

Author

Peter Luschny, Apr 01 2019

Keywords

Comments

a is strongly prime to n if and only if a <= n is prime to n and a does not divide n-1. See the link to 'Strong Coprimality'. (Our terminology follows the plea of Knuth, Graham and Patashnik in Concrete Mathematics, p. 115.)

Examples

			The length of row n is A181830(n) = phi(n) - tau(n-1). The triangular array starts:
[1] {1}
[2] {}
[3] {}
[4] {}
[5] {3}
[6] {}
[7] {4, 5}
[8] {3, 5}
[9] {5, 7}
[11] {3, 4, 6, 7, 8, 9}
[12] {5, 7}
[10] {7}
[13] {5, 7, 8, 9, 10, 11}
[14] {3, 5, 9, 11}
[15] {4, 8, 11, 13}
[16] {7, 9, 11, 13}
[17] {3, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15}
[18] {5, 7, 11, 13}
[19] {4, 5, 7, 8, 10, 11, 12, 13, 14, 15, 16, 17}
[20] {3, 7, 9, 11, 13, 17}
		

Crossrefs

Programs

  • Maple
    StrongCoprimes := n -> select(k -> igcd(k, n)=1, {$1..n}) minus numtheory:-divisors(n-1):
    A322936row:=  proc(n) if n in {2, 3, 4, 6} then return 0 else op(StrongCoprimes(n)) fi end:
    seq(A322936row(n), n=1..20);
  • Mathematica
    Table[If[n == 1, {1}, Select[Range[2, n], And[GCD[#, n] == 1, Mod[n - 1, #] != 0] &] /. {} -> {0}], {n, 21}] // Flatten (* Michael De Vlieger, Apr 01 2019 *)
  • Sage
    def primeto(n):
        return [p for p in range(n) if gcd(p, n) == 1]
    def strongly_primeto(n):
        return [p for p in set(primeto(n)) - set((n-1).divisors())]
    def A322936row(n):
        if n == 1: return [1]
        if n in [2, 3, 4, 6]: return [0]
        return sorted(strongly_primeto(n))
    for n in (1..21): print(A322936row(n))
Showing 1-9 of 9 results.