A181844 Sum over all partitions of n of the LCM of the parts.
1, 1, 3, 6, 12, 23, 38, 73, 118, 198, 318, 530, 819, 1298, 1974, 2975, 4516, 6698, 9980, 14550, 21186, 30304, 43503, 62030, 87908, 123292, 172543, 239720, 331688, 458198, 629376, 860332, 1168172, 1583176, 2138438, 2876283, 3859770, 5159886, 6863702, 9112356
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..188 (terms n=1..80 from Vincenzo Librandi)
Programs
-
Maple
with(combstruct): a181844 := proc(n) local k,L,l,R,part; R := NULL; L := 0; for k from 1 to n do part := iterstructs(Partition(n),size=k): while not finished(part) do l := nextstruct(part); L := L + ilcm(op(l)); od; od; L end: # second Maple program: b:= proc(n, i, r) option remember; `if`(n=0, r, `if`(i<1, 0, b(n, i-1, r)+b(n-i, min(i, n-i), ilcm(i, r)))) end: a:= n-> b(n$2, 1): seq(a(n), n=0..42); # Alois P. Heinz, Mar 18 2019
-
Mathematica
t[n_, k_] := LCM @@@ IntegerPartitions[n, {n - k + 1}] // Total; a[n_] := Sum[t[n, k], {k, 1, n}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Jul 26 2013 *)
Formula
a(n) = Sum_{k>=0} k * A256067(n,k) = Sum_{k>=0} A256553(n,k)*A256554(n,k). - Alois P. Heinz, Apr 02 2015
Extensions
a(0)=1 prepended by Alois P. Heinz, Mar 29 2015
New name from Alois P. Heinz, Mar 18 2019
Comments