A181866 a(1) = 1, a(2) = 2. For n >= 3, a(n) is found by concatenating the fourth powers of the first n-1 terms of the sequence and then dividing the resulting number by a(n-1).
1, 2, 58, 200195112, 580000000008023436288643185139644928
Offset: 1
Examples
The recurrence relation (2) above gives a(6) = a(5)^3+10^144*a(4) = 200 19511 20000 00000 00000 00000 00000 00000 00000 00195 11200 00080 97251 90261 07158 64917 75226 28886 69453 43420 83613 55167 37330 42401 44438 01550 47183 94579 01959 53586 66752. a(6) has 153 digits.
Crossrefs
Programs
-
Maple
#A181866 M:=5: a:=array(1..M):s:=array(1..M): a[1]:=1:a[2]:=2: s[1]:=convert(a[1]^4,string): s[2]:=cat(s[1],convert(a[2]^4,string)): for n from 3 to M do a[n] := parse(s[n-1])/a[n-1]; s[n]:= cat(s[n-1],convert(a[n]^4,string)); end do: seq(a[n],n = 1..M);
Formula
DEFINITION
a(1) = 1, a(2) = 2, and for n >= 3
(1)... a(n) = concatenate(a(1)^4,a(2)^4,...,a(n-1)^4)/a(n-1).
RECURRENCE RELATION
For n >= 2
(2)... a(n+2) = a(n+1)^3 + (100^F(n,4))*a(n)
= a(n+1)^3 + (10^F(3*n))*a(n),
where F(n,4) is the Fibonacci polynomial F(n,x) evaluated at x = 4
and where F(n) denotes the n-th Fibonacci number A000045(n).
F(n,4) = A001076(n).
Comments