A181869 a(1) = 2, a(2) = 1. For n >= 3, a(n) is found by concatenating the squares of the first n-1 terms of the sequence in reverse order and then dividing the resulting number by a(n-1).
2, 1, 14, 1401, 140100014, 140100014000000001401, 14010001400000000140100000000000000000000140100014
Offset: 1
Crossrefs
Programs
-
Maple
#A181869 M:=7: a:=array(1..M):s:=array(1..M): a[1]:=2:a[2]:=1: s[1]:=convert(a[1]^2,string): s[2]:=cat(convert(a[2]^2,string),s[1]): for n from 3 to M do a[n] := parse(s[n-1])/a[n-1]; s[n]:= cat(convert(a[n]^2,string),s[n-1]); end do: seq(a[n],n = 1..M);
Formula
DEFINITION
a(1) = 2, a(2) = 1, and for n >= 3
(1)... a(n) = concatenate (a(n-1)^2,a(n-2)^2,...,a(1)^2)/a(n-1).
RECURRENCE RELATION
For n >= 2,
(2)... a(n+2) = 10^F(n,2)*a(n+1) + a(n) = 10^Pell(n)*a(n+1) + a(n),
where F(n,2) is the n-th Fibonacci polynomial F(n,x) evaluated at
x = 2, and Pell(n) = A000129(n).
a(n) has A024537(n-2) digits.
Comments