A181870 a(1) = 2, a(2) = 1. For n >= 3, a(n) is found by concatenating the cubes of the first n-1 terms of the sequence in reverse order and then dividing the resulting number by a(n-1).
2, 1, 18, 32401, 1049824801000018, 110213211279472739469283600032400000000000000032401
Offset: 1
Examples
a(7) = 12 14695 19405 33697 08585 73749 64887 08343 06977 30753 71161 37983 82152 46308 85158 49299 58480 00000 00001 04982 48010 00000 00000 00000 00000 00000 00000 00000 00000 00000 00001 04982 48010 00018 has 167 digits.
Crossrefs
Programs
-
Maple
#A181870 M:=6: a:=array(1..M):s:=array(1..M): a[1]:=2: a[2]:=1: s[1]:=convert(a[1]^3,string): s[2]:=cat(convert(a[2]^3,string),s[1]): for n from 3 to M do a[n] := parse(s[n-1])/a[n-1]; s[n]:= cat(convert(a[n]^3,string),s[n-1]); end do: seq(a[n],n = 1..M);
Formula
DEFINITION
a(1) = 2, a(2) = 1, and for n >= 3,
(1)... a(n) = concatenate (a(n-1)^3,a(n-2)^3,...,a(1)^3)/a(n-1).
RECURRENCE RELATION
It appears that for n >= 2,
(2)... a(n+2) = 100^F(n-1,3)*a(n+1)^2 + a(n)
= 100^A006190(n-1)*a(n+1)^2 + a(n)
= 10^A052991(n-1)*a(n+1)^2 + a(n),
where F(n,3) is the n-th Fibonacci polynomial F(n,x) evaluated at x = 3.
Comments