A181872 Numerators of coefficient array for minimal polynomials of sin(2*Pi/n). Rising powers of x.
0, 1, 0, 1, -3, 0, 1, -1, 1, 5, 0, -5, 0, 1, -3, 0, 1, -7, 0, 7, 0, -7, 0, 1, -1, 0, 1, -3, 0, 9, 0, -3, 0, 1, 5, 0, -5, 0, 1, -11, 0, 55, 0, -77, 0, 11, 0, -11, 0, 1, -1, 1, 13, 0, -91, 0, 91, 0, -39, 0, 65, 0, -13, 0, 1, -7, 0, 7, 0, -7, 0, 1, 1, 0, -1, 0, 7, 0, -7, 0, 1, 1, 0, -1, 0, 1, 17, 0, -51, 0, 357, 0, -561, 0, 935, 0, -221, 0, 119, 0, -17, 0, 1, -3, 0, 9, 0, -3, 0, 1, -19, 0, 285, 0, -627, 0, 627, 0, -2717, 0, 1729, 0, -665, 0, 19, 0, -19, 0, 1, -1, 1, 1, 1, 0, -1, 0, 15, 0, -39, 0, 11, 0, -11, 0, 1, -11, 0, 55, 0, -77, 0, 11, 0, -11, 0, 1
Offset: 1
Examples
Triangle begins: [0, 1], [0, 1], [-3, 0, 1], [-1, 1], [5, 0, -5, 0, 1], [-3, 0, 1], [-7, 0, 7, 0, -7, 0, 1], [-1, 0, 1], [-3, 0, 9, 0, -3, 0, 1], [5, 0, -5, 0, 1], ... The rational coefficients r(n,m) start like: [0, 1], [0, 1], [-3/4, 0, 1], [-1, 1], [5/16, 0, -5/4, 0, 1], [-3/4, 0, 1], [-7/64, 0, 7/8, 0, -7/4, 0, 1], [-1/2, 0, 1], [-3/64, 0, 9/16, 0, -3/2, 0, 1], ... Pi(6,n) = Psi(c(6),x) = Psi(12,x) = x^2-3/4.
References
- I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
Links
- S. Beslin and V. de Angelis, The minimal Polynomials of sin(2Pi/p) and cos(2Pi/p), Mathematics Mag. 77.2 (2004) 146-9.
- Wolfdieter Lang, Minimal polynomials for sin(2Pi/n).
- D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40 (3) (1933) 165-6.
- W. Watkins and J. Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly 100,5 (1993) 471-4.
Programs
-
Mathematica
p[n_, x_] := MinimalPolynomial[ Sin[2 Pi/n], x]; Flatten[ Numerator[ Table[ coes = CoefficientList[ p[n, x], x]; coes / Last[coes], {n, 1, 22}]]] (* Jean-François Alcover, Nov 07 2011 *)
Formula
a(n,m) = numerator([x^m]Pi(n,x)), n>=1, m=0..A093819(n). For Pi(n,x) see the comments.
The minimal polynomial Pi(n,x) = Product_{k=0..floor(c(n)/2), gcd(k, c(n)) = 1}, x - cos(2*Pi*k/c(n)), for n >= 1. - Wolfdieter Lang, Oct 30 2019
Comments