cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A049310 Triangle of coefficients of Chebyshev's S(n,x) := U(n,x/2) polynomials (exponents in increasing order).

Original entry on oeis.org

1, 0, 1, -1, 0, 1, 0, -2, 0, 1, 1, 0, -3, 0, 1, 0, 3, 0, -4, 0, 1, -1, 0, 6, 0, -5, 0, 1, 0, -4, 0, 10, 0, -6, 0, 1, 1, 0, -10, 0, 15, 0, -7, 0, 1, 0, 5, 0, -20, 0, 21, 0, -8, 0, 1, -1, 0, 15, 0, -35, 0, 28, 0, -9, 0, 1, 0, -6, 0, 35, 0, -56, 0, 36, 0, -10, 0, 1, 1, 0, -21, 0, 70, 0, -84, 0
Offset: 0

Views

Author

Keywords

Comments

G.f. for row polynomials S(n,x) (signed triangle): 1/(1-x*z+z^2). Unsigned triangle |a(n,m)| has Fibonacci polynomials F(n+1,x) as row polynomials with g.f. 1/(1-x*z-z^2). |a(n,m)| triangle has rows of Pascal's triangle A007318 in the even-numbered diagonals (odd-numbered ones have only 0's).
Row sums (unsigned triangle) A000045(n+1) (Fibonacci). Row sums (signed triangle) S(n,1) sequence = periodic(1,1,0,-1,-1,0) = A010892.
Alternating row sums A049347(n) = S(n,-1) = periodic(1,-1,0). - Wolfdieter Lang, Nov 04 2011
S(n,x) is the characteristic polynomial of the adjacency matrix of the n-path. - Michael Somos, Jun 24 2002
S(n,x) is also the matching polynomial of the n-path. - Eric W. Weisstein, Apr 10 2017
|T(n,k)| = number of compositions of n+1 into k+1 odd parts. Example: |T(7,3)| = 10 because we have (1,1,3,3), (1,3,1,3), (1,3,3,1), (3,1,1,3), (3,1,3,1), (3,3,1,1), (1,1,1,5), (1,1,5,1), (1,5,1,1) and (5,1,1,1). - Emeric Deutsch, Apr 09 2005
S(n,x)= R(n,x) + S(n-2,x), n >= 2, S(-1,x)=0, S(0,x)=1, R(n,x):=2*T(n,x/2) = Sum_{m=0..n} A127672(n,m)*x^m (monic integer Chebyshev T-Polynomials). This is the rewritten so-called trace of the transfer matrix formula for the T-polynomials. - Wolfdieter Lang, Dec 02 2010
In a regular N-gon inscribed in a unit circle, the side length is d(N,1) = 2*sin(Pi/N). The length ratio R(N,k):=d(N,k)/d(N,1) for the (k-1)-th diagonal, with k from {2,3,...,floor(N/2)}, N >= 4, equals S(k-1,x) = sin(k*Pi/N)/sin(Pi/N) with x=rho(N):=R(N,2) = 2*cos(Pi/N). Example: N=7 (heptagon), rho=R(7,2), sigma:=R(N,3) = S(2,rho) = rho^2 - 1. Motivated by the quoted paper by P. Steinbach. - Wolfdieter Lang, Dec 02 2010
From Wolfdieter Lang, Jul 12 2011: (Start)
In q- or basic analysis, q-numbers are [n]_q := S(n-1,q+1/q) = (q^n-(1/q)^n)/(q-1/q), with the row polynomials S(n,x), n >= 0.
The zeros of the row polynomials S(n-1,x) are (from those of Chebyshev U-polynomials):
x(n-1;k) = +- t(k,rho(n)), k = 1..ceiling((n-1)/2), n >= 2, with t(n,x) the row polynomials of A127672 and rho(n):= 2*cos(Pi/n). The simple vanishing zero for even n appears here as +0 and -0.
Factorization of the row polynomials S(n-1,x), x >= 1, in terms of the minimal polynomials of cos(2 Pi/2), called Psi(n,x), with coefficients given by A181875/A181876:
S(n-1,x) = (2^(n-1))*Product_{n>=1}(Psi(d,x/2), 2 < d | 2n).
(From the rewritten eq. (3) of the Watkins and Zeitlin reference, given under A181872.) [See the W. Lang ArXiv link, Proposition 9, eq. (62). - Wolfdieter Lang, Apr 14 2018]
(End)
The discriminants of the S(n,x) polynomials are found in A127670. - Wolfdieter Lang, Aug 03 2011
This is an example for a subclass of Riordan convolution arrays (lower triangular matrices) called Bell arrays. See the L. W. Shapiro et al. reference under A007318. If a Riordan array is named (G(z),F(z)) with F(z)=z*Fhat(z), the o.g.f. for the row polynomials is G(z)/(1-x*z*Fhat(z)), and it becomes a Bell array if G(z)=Fhat(z). For the present Bell type triangle G(z)=1/(1+z^2) (see the o.g.f. comment above). This leads to the o.g.f. for the column no. k, k >= 0, x^k/(1+x^2)^(k+1) (see the formula section), the one for the row sums and for the alternating row sums (see comments above). The Riordan (Bell) A- and Z-sequences (defined in a W. Lang link under A006232, with references) have o.g.f.s 1-x*c(x^2) and -x*c(x^2), with the o.g.f. of the Catalan numbers A000108. Together they lead to a recurrence given in the formula section. - Wolfdieter Lang, Nov 04 2011
The determinant of the N x N matrix S(N,[x[1], ..., x[N]]) with elements S(m-1,x[n]), for n, m = 1, 2, ..., N, and for any x[n], is identical with the determinant of V(N,[x[1], ..., x[N]]) with elements x[n]^(m-1) (a Vandermondian, which equals Product_{1 <= i < j<= N} (x[j] - x[i])). This is a special instance of a theorem valid for any N >= 1 and any monic polynomial system p(m,x), m>=0, with p(0,x) = 1. For this theorem see the Vein-Dale reference, p. 59. Thanks to L. Edson Jeffery for an email asking for a proof of the non-singularity of the matrix S(N,[x[1], ...., x[N]]) if and only if the x[j], j = 1..N, are pairwise distinct. - Wolfdieter Lang, Aug 26 2013
These S polynomials also appear in the context of modular forms. The rescaled Hecke operator T*n = n^((1-k)/2)*T_n acting on modular forms of weight k satisfies T*(p^n) = S(n, T*p), for each prime p and positive integer n. See the Koecher-Krieg reference, p. 223. - _Wolfdieter Lang, Jan 22 2016
For a shifted o.g.f. (mod signs), its compositional inverse, and connections to Motzkin and Fibonacci polynomials, non-crossing partitions and other combinatorial structures, see A097610. - Tom Copeland, Jan 23 2016
From M. Sinan Kul, Jan 30 2016; edited by Wolfdieter Lang, Jan 31 2016 and Feb 01 2016: (Start)
Solutions of the Diophantine equation u^2 + v^2 - k*u*v = 1 for integer k given by (u(k,n), v(k,n)) = (S(n,k), S(n-1,k)) because of the Cassini-Simson identity: S(n,x)^2 - S(n+1,x)*S(n-1, x) = 1, after use of the S-recurrence. Note that S(-n, x) = -S(-n-2, x), n >= 1, and the periodicity of some S(n, k) sequences.
Hence another way to obtain the row polynomials would be to take powers of the matrix [x, -1; 1,0]: S(n, x) = (([x, -1; 1, 0])^n)[1,1], n >= 0.
See also a Feb 01 2016 comment on A115139 for a well-known S(n, x) sum formula.
Then we have with the present T triangle
A039834(n) = -i^(n+1)*T(n-1, k) where i is the imaginary unit and n >= 0.
A051286(n) = Sum_{i=0..n} T(n,i)^2 (see the Philippe Deléham, Nov 21 2005 formula),
A181545(n) = Sum_{i=0..n+1} abs(T(n,i)^3),
A181546(n) = Sum_{i=0..n+1} T(n,i)^4,
A181547(n) = Sum_{i=0..n+1} abs(T(n,i)^5).
S(n, 0) = A056594(n), and for k = 1..10 the sequences S(n-1, k) with offset n = 0 are A128834, A001477, A001906, A001353, A004254, A001109, A004187, A001090, A018913, A004189.
(End)
For more on the Diophantine equation presented by Kul, see the Ismail paper. - Tom Copeland, Jan 31 2016
The o.g.f. for the Legendre polynomials L(n,x) is 1 / sqrt(1- 2x*z + z^2), and squaring it gives the o.g.f. of U(n,x), A053117, so Sum_{k=0..n} L(k,x/2) L(n-k,x/2) = S(n,x). This gives S(n,x) = L(n/2,x/2)^2 + 2*Sum_{k=0..n/2-1} L(k,x/2) L(n-k,x/2) for n even and S(n,x) = 2*Sum_{k=0..(n-1)/2} L(k,x/2) L(n-k,x/2) for odd n. For a connection to elliptic curves and modular forms, see A053117. For the normalized Legendre polynomials, see A100258. For other properties and relations to other polynomials, see Allouche et al. - Tom Copeland, Feb 04 2016
LG(x,h1,h2) = -log(1 - h1*x + h2*x^2) = Sum_{n>0} F(n,-h1,h2,0,..,0) x^n/n is a log series generator of the bivariate row polynomials of A127672 with A127672(0,0) = 0 and where F(n,b1,b2,..,bn) are the Faber polynomials of A263916. Exp(LG(x,h1,h2)) = 1 / (1 - h1*x + h2*x^2 ) is the o.g.f. of the bivariate row polynomials of this entry. - Tom Copeland, Feb 15 2016 (Instances of the bivariate o.g.f. for this entry are on pp. 5 and 18 of Sunada. - Tom Copeland, Jan 18 2021)
For distinct odd primes p and q the Legendre symbol can be written as Legendre(q,p) = Product_{k=1..P} S(q-1, 2*cos(2*Pi*k/p)), with P = (p-1)/2. See the Lemmermeyer reference, eq. (8.1) on p. 236. Using the zeros of S(q-1, x) (see above) one has S(q-1, x) = Product_{l=1..Q} (x^2 - (2*cos(Pi*l/q))^2), with Q = (q-1)/2. Thus S(q-1, 2*cos(2*Pi*k/p)) = ((-4)^Q)*Product_{l=1..Q} (sin^2(2*Pi*k/p) - sin^2(Pi*l/q)) = ((-4)^Q)*Product_{m=1..Q} (sin^2(2*Pi*k/p) - sin^2(2*Pi*m/q)). For the proof of the last equality see a W. Lang comment on the triangle A057059 for n = Q and an obvious function f. This leads to Eisenstein's proof of the quadratic reciprocity law Legendre(q,p) = ((-1)^(P*Q)) * Legendre(p,q), See the Lemmermeyer reference, pp. 236-237. - Wolfdieter Lang, Aug 28 2016
For connections to generalized Fibonacci polynomials, compare their generating function on p. 5 of the Amdeberhan et al. link with the o.g.f. given above for the bivariate row polynomials of this entry. - Tom Copeland, Jan 08 2017
The formula for Ramanujan's tau function (see A000594) for prime powers is tau(p^k) = p^(11*k/2)*S(k, p^(-11/2)*tau(p)) for k >= 1, and p = A000040(n), n >= 1. See the Hardy reference, p. 164, eqs. (10.3.4) and (10.3.6) rewritten in terms of S. - Wolfdieter Lang, Jan 27 2017
From Wolfdieter Lang, May 08 2017: (Start)
The number of zeros Z(n) of the S(n, x) polynomials in the open interval (-1,+1) is 2*b(n) for even n >= 0 and 1 + 2*b(n) for odd n >= 1, where b(n) = floor(n/2) - floor((n+1)/3). This b(n) is the number of integers k in the interval (n+1)/3 < k <= floor(n/2). See a comment on the zeros of S(n, x) above, and b(n) = A008615(n-2), n >= 0. The numbers Z(n) have been proposed (with a conjecture related to A008611) by Michel Lagneau, as the number of zeros of Fibonacci polynomials on the imaginary axis (-I,+I), with I=sqrt(-1). They are Z(n) = A008611(n-1), n >= 0, with A008611(-1) = 0. Also Z(n) = A194960(n-4), n >= 0. Proof using the A008611 version. A194960 follows from this.
In general the number of zeros Z(a;n) of S(n, x) for n >= 0 in the open interval (-a,+a) for a from the interval (0,2) (x >= 2 never has zeros, and a=0 is trivial: Z(0;n) = 0) is with b(a;n) = floor(n//2) - floor((n+1)*arccos(a/2)/Pi), as above Z(a;n) = 2*b(a;n) for even n >= 0 and 1 + 2*b(a;n) for odd n >= 1. For the closed interval [-a,+a] Z(0;n) = 1 and for a from (0,1) one uses for Z(a;n) the values b(a;n) = floor(n/2) - ceiling((n+1)*arccos(a/2)/Pi) + 1. (End)
The Riordan row polynomials S(n, x) (Chebyshev S) belong to the Boas-Buck class (see a comment and references in A046521), hence they satisfy the Boas-Buck identity: (E_x - n*1)*S(n, x) = (E_x + 1)*Sum_{p=0..n-1} (1 - (-1)^p)*(-1)^((p+1)/2)*S(n-1-p, x), for n >= 0, where E_x = x*d/dx (Euler operator). For the triangle T(n, k) this entails a recurrence for the sequence of column k, given in the formula section. - Wolfdieter Lang, Aug 11 2017
The e.g.f. E(x,t) := Sum_{n>=0} (t^n/n!)*S(n,x) for the row polynomials is obtained via inverse Laplace transformation from the above given o.g.f. as E(x,t) = ((1/xm)*exp(t/xm) - (1/xp)*exp(t/xp) )/(xp - xm) with xp = (x + sqrt(x^2-4))/2 and xm = (x - sqrt(x^2-4))/2. - Wolfdieter Lang, Nov 08 2017
From Wolfdieter Lang, Apr 12 2018: (Start)
Factorization of row polynomials S(n, x), for n >= 1, in terms of C polynomials (not Chebyshev C) with coefficients given in A187360. This is obtained from the factorization into Psi polynomials (see the Jul 12 2011 comment above) but written in terms of minimal polynomials of 2*cos(2*Pi/n) with coefficients in A232624:
S(2*k, x) = Product_{2 <= d | (2*k+1)} C(d, x)*(-1)^deg(d)*C(d, -x), with deg(d) = A055034(d) the degree of C(d, x).
S(2*k+1, x) = Product_{2 <= d | 2*(k+1)} C(d, x) * Product_{3 <= 2*d + 1 | (k+1)} (-1)^(deg(2*d+1))*C(2*d+1, -x).
Note that (-1)^(deg(2*d+1))*C(2*d+1, -x)*C(2*d+1, x) pairs always appear.
The number of C factors of S(2*k, x), for k >= 0, is 2*(tau(2*k+1) - 1) = 2*(A099774(k+1) - 1) = 2*A095374(k), and for S(2*k+1, x), for k >= 0, it is tau(2*(k+1)) + tau_{odd}(k+1) - 2 = A302707(k), with tau(2*k+1) = A099774(k+1), tau(n) = A000005 and tau(2*(k+1)) = A099777(k+1).
For the reverse problem, the factorization of C polynomials into S polynomials, see A255237. (End)
The S polynomials with general initial conditions S(a,b;n,x) = x*S(a,b;n-1,x) - S(a,b;n-2,x), for n >= 1, with S(a,b;-1,x) = a and S(a,b;0,x) = b are S(a,b;n,x) = b*S(n, x) - a*S(n-1, x), for n >= -1. Recall that S(-2, x) = -1 and S(-1, x) = 0. The o.g.f. is G(a,b;z,x) = (b - a*z)/(1 - x*z + z^2). - Wolfdieter Lang, Oct 18 2019
Also the convolution triangle of A101455. - Peter Luschny, Oct 06 2022
From Wolfdieter Lang, Apr 26 2023: (Start)
Multi-section of S-polynomials: S(m*n+k, x) = S(m+k, x)*S(n-1, R(m, x)) - S(k, x)*S(n-2, R(m, x)), with R(n, x) = S(n, x) - S(n-2, x) (see A127672), S(-2, x) = -1, and S(-1, x) = 0, for n >= 0, m >= 1, and k = 0, 1, ..., m-1.
O.g.f. of {S(m*n+k, y)}_{n>=0}: G(m,k,y,x) = (S(k, y) - (S(k, y)*R(m, y) - S(m+k, y))*x)/(1 - R(m,y)*x + x^2).
See eqs. (40) and (49), with r = x or y and s =-1, of the G. Detlefs and W. Lang link at A034807. (End)
S(n, x) for complex n and complex x: S(n, x) = ((-i/2)/sqrt(1 - (x/2)^2))*(q(x/2)*exp(+n*log(q(x/2))) - (1/q(x/2))*exp(-n*log(q(x/2)))), with q(x) = x + sqrt(1 - x^2)*i. Here log(z) = |z| + Arg(z)*i, with Arg(z) from [-Pi,+Pi) (principal branch). This satisfies the recurrence relation for S because it is derived from the Binet - de Moivre formula for S. Examples: S(n/m, 0) = cos((n/m)*Pi/4), for n >= 0 and m >= 1. S(n*i, 0) = (1/2)*(1 + exp(n*Pi))*exp(-(n/2)*Pi), for n >= 0. S(1+i, 2+i) = 0.6397424847... + 1.0355669490...*i. Thanks to Roberto Alfano for asking a question leading to this formula. - Wolfdieter Lang, Jun 05 2023
Lim_{n->oo} S(n, x)/S(n-1, x) = r(x) = (x - sqrt(x^2 -4))/2, for |x| >= 2. For x = +-2, this limit is +-1. - Wolfdieter Lang, Nov 15 2023

Examples

			The triangle T(n, k) begins:
  n\k  0  1   2   3   4   5   6    7   8   9  10  11
  0:   1
  1:   0  1
  2:  -1  0   1
  3:   0 -2   0   1
  4:   1  0  -3   0   1
  5:   0  3   0  -4   0   1
  6:  -1  0   6   0  -5   0   1
  7:   0 -4   0  10   0  -6   0    1
  8:   1  0 -10   0  15   0  -7    0   1
  9:   0  5   0 -20   0  21   0   -8   0   1
  10: -1  0  15   0 -35   0  28    0  -9   0   1
  11:  0 -6   0  35   0 -56   0   36   0 -10   0   1
  ... Reformatted and extended by _Wolfdieter Lang_, Oct 24 2012
For more rows see the link.
E.g., fourth row {0,-2,0,1} corresponds to polynomial S(3,x)= -2*x + x^3.
From _Wolfdieter Lang_, Jul 12 2011: (Start)
Zeros of S(3,x) with rho(4)= 2*cos(Pi/4) = sqrt(2):
  +- t(1,sqrt(2)) = +- sqrt(2) and
  +- t(2,sqrt(2)) = +- 0.
Factorization of S(3,x) in terms of Psi polynomials:
S(3,x) = (2^3)*Psi(4,x/2)*Psi(8,x/2) = x*(x^2-2).
(End)
From _Wolfdieter Lang_, Nov 04 2011: (Start)
A- and Z- sequence recurrence:
T(4,0) = - (C(0)*T(3,1) + C(1)*T(3,3)) = -(-2 + 1) = +1,
T(5,3) = -3 - 1*1 = -4.
(End)
Boas-Buck recurrence for column k = 2, n = 6: S(6, 2) = (3/4)*(0 - 2* S(4 ,2) + 0 + 2*S(2, 2)) = (3/4)*(-2*(-3) + 2) = 6. - _Wolfdieter Lang_, Aug 11 2017
From _Wolfdieter Lang_, Apr 12 2018: (Start)
Factorization into C polynomials (see the Apr 12 2018 comment):
S(4, x) = 1 - 3*x^2 + x^4 = (-1 + x + x^2)*(-1 - x + x^2) = (-C(5, -x)) * C(5, x); the number of factors is 2 = 2*A095374(2).
S(5, x) = 3*x - 4*x^3 + x^5 = x*(-1 + x)*(1 + x)*(-3 + x^2) = C(2, x)*C(3, x)*(-C(3, -x))*C(6, x); the number of factors is 4 = A302707(2). (End)
		

References

  • G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, AMS Chelsea Publishing, Providence, Rhode Island, 2002, p. 164.
  • Max Koecher and Aloys Krieg, Elliptische Funktionen und Modulformen, 2. Auflage, Springer, 2007, p. 223.
  • Franz Lemmermeyer, Reciprocity Laws. From Euler to Eisenstein, Springer, 2000.
  • D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, 1970; p. 232, Sect. 3.3.38.
  • Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990, pp. 60 - 61.
  • R. Vein and P. Dale, Determinants and Their Applications in Mathematical Physics, Springer, 1999.

Crossrefs

Cf. A000005, A000217, A000292, A000332, A000389, A001227, A007318, A008611, A008615, A101455, A010892, A011973, A053112 (without zeros), A053117, A053119 (reflection), A053121 (inverse triangle), A055034, A097610, A099774, A099777, A100258, A112552 (first column clipped), A127672, A168561 (absolute values), A187360. A194960, A232624, A255237.
Triangles of coefficients of Chebyshev's S(n,x+k) for k = 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5: A207824, A207823, A125662, A078812, A101950, A049310, A104562, A053122, A207815, A159764, A123967.

Programs

  • Magma
    A049310:= func< n,k | ((n+k) mod 2) eq 0 select (-1)^(Floor((n+k)/2)+k)*Binomial(Floor((n+k)/2), k) else 0 >;
    [A049310(n,k): k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 25 2022
  • Maple
    A049310 := proc(n,k): binomial((n+k)/2,(n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2 end: seq(seq(A049310(n,k), k=0..n),n=0..11); # Johannes W. Meijer, Aug 08 2011
    # Uses function PMatrix from A357368. Adds a row above and a column to the left.
    PMatrix(10, n -> ifelse(irem(n, 2) = 0, 0, (-1)^iquo(n-1, 2))); # Peter Luschny, Oct 06 2022
  • Mathematica
    t[n_, k_] /; EvenQ[n+k] = ((-1)^((n+k)/2+k))*Binomial[(n+k)/2, k]; t[n_, k_] /; OddQ[n+k] = 0; Flatten[Table[t[n, k], {n, 0, 12}, {k, 0, n}]][[;; 86]] (* Jean-François Alcover, Jul 05 2011 *)
    Table[Coefficient[(-I)^n Fibonacci[n + 1, - I x], x, k], {n, 0, 10}, {k, 0, n}] //Flatten (* Clark Kimberling, Aug 02 2011; corrected by Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[ChebyshevU[Range[0, 10], -x/2], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
    CoefficientList[Table[(-I)^n Fibonacci[n + 1, -I x], {n, 0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 06 2017 *)
  • PARI
    {T(n, k) = if( k<0 || k>n || (n + k)%2, 0, (-1)^((n + k)/2 + k) * binomial((n + k)/2, k))} /* Michael Somos, Jun 24 2002 */
    
  • SageMath
    @CachedFunction
    def A049310(n,k):
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        return A049310(n-1,k-1) - A049310(n-2,k)
    for n in (0..9): [A049310(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
    

Formula

T(n,k) := 0 if n < k or n+k odd, otherwise ((-1)^((n+k)/2+k))*binomial((n+k)/2, k); T(n, k) = -T(n-2, k)+T(n-1, k-1), T(n, -1) := 0 =: T(-1, k), T(0, 0)=1, T(n, k)= 0 if n < k or n+k odd; g.f. k-th column: (1 / (1 + x^2)^(k + 1)) * x^k. - Michael Somos, Jun 24 2002
T(n,k) = binomial((n+k)/2, (n-k)/2)*cos(Pi*(n-k)/2)*(1+(-1)^(n-k))/2. - Paul Barry, Aug 28 2005
Sum_{k=0..n} T(n,k)^2 = A051286(n). - Philippe Deléham, Nov 21 2005
Recurrence for the (unsigned) Fibonacci polynomials: F(1)=1, F(2)=x; for n > 2, F(n) = x*F(n-1) + F(n-2).
From Wolfdieter Lang, Nov 04 2011: (Start)
The Riordan A- and Z-sequences, given in a comment above, lead together to the recurrence:
T(n,k) = 0 if n < k, if k=0 then T(0,0)=1 and
T(n,0)= -Sum_{i=0..floor((n-1)/2)} C(i)*T(n-1,2*i+1), otherwise T(n,k) = T(n-1,k-1) - Sum_{i=1..floor((n-k)/2)} C(i)*T(n-1,k-1+2*i), with the Catalan numbers C(n)=A000108(n).
(End)
The row polynomials satisfy also S(n,x) = 2*(T(n+2, x/2) - T(n, x/2))/(x^2-4) with the Chebyshev T-polynomials. Proof: Use the trace formula 2*T(n, x/2) = S(n, x) - S(n-2, x) (see the Dec 02 2010 comment above) and the S-recurrence several times. This is a formula which expresses the S- in terms of the T-polynomials. - Wolfdieter Lang, Aug 07 2014
From Tom Copeland, Dec 06 2015: (Start)
The non-vanishing, unsigned subdiagonals Diag_(2n) contain the elements D(n,k) = Sum_{j=0..k} D(n-1,j) = (k+1) (k+2) ... (k+n) / n! = binomial(n+k,n), so the o.g.f. for the subdiagonal is (1-x)^(-(n+1)). E.g., Diag_4 contains D(2,3) = D(1,0) + D(1,1) + D(1,2) + D(1,3) = 1 + 2 + 3 + 4 = 10 = binomial(5,2). Diag_4 is shifted A000217; Diag_6, shifted A000292: Diag_8, shifted A000332; and Diag_10, A000389.
The non-vanishing antidiagonals are signed rows of the Pascal triangle A007318.
For a reversed, unsigned version with the zeros removed, see A011973. (End)
The Boas-Buck recurrence (see a comment above) for the sequence of column k is: S(n, k) = ((k+1)/(n-k))*Sum_{p=0..n-1-k} (1 - (-1)^p)*(-1)^((p+1)/2) * S(n-1-p, k), for n > k >= 0 and input S(k, k) = 1. - Wolfdieter Lang, Aug 11 2017
The m-th row consecutive nonzero entries in order are (-1)^c*(c+b)!/c!b! with c = m/2, m/2-1, ..., 0 and b = m-2c if m is even and with c = (m-1)/2, (m-1)/2-1, ..., 0 with b = m-2c if m is odd. For the 8th row starting at a(36) the 5 consecutive nonzero entries in order are 1,-10,15,-7,1 given by c = 4,3,2,1,0 and b = 0,2,4,6,8. - Richard Turk, Aug 20 2017
O.g.f.: exp( Sum_{n >= 0} 2*T(n,x/2)*t^n/n ) = 1 + x*t + (-1 + x^2)*t^2 + (-2*x + x^3)*t^3 + (1 - 3*x^2 + x^4)*t^4 + ..., where T(n,x) denotes the n-th Chebyshev polynomial of the first kind. - Peter Bala, Aug 15 2022

A093819 Algebraic degree of sin(2*Pi/n).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 6, 2, 6, 4, 10, 1, 12, 6, 8, 4, 16, 6, 18, 2, 12, 10, 22, 4, 20, 12, 18, 3, 28, 8, 30, 8, 20, 16, 24, 3, 36, 18, 24, 8, 40, 12, 42, 5, 24, 22, 46, 8, 42, 20, 32, 6, 52, 18, 40, 12, 36, 28, 58, 4, 60, 30, 36, 16, 48, 20, 66, 8, 44, 24, 70, 12, 72, 36, 40, 9, 60, 24
Offset: 1

Views

Author

Eric W. Weisstein, Apr 16 2004

Keywords

Comments

The degree formula given in the I. Niven reference on p. 37-8 (see below) appears as part of theorem 3.9 attributed to D. H. Lehmer. However, this part, concerning sin(2*Pi/n), differs from Lehmer's result, which in fact is incorrect. - Wolfdieter Lang, Jan 09 2011
This is also the algebraic degree of the area of a regular n-gon inscribed in the unit circle. - Jack W Grahl, Jan 10 2011
Every degree appears in this sequence except for the half-nontotients, A079695. - T. D. Noe, Jan 12 2011
See A181872/A181873 for the monic rational minimal polynomial of sin(2*Pi/n), and A181871 for the non-monic integer version. In A231188 the (monic and integer) minimal polynomials for 2*sin(2*Pi/n) are given. - Wolfdieter Lang, Nov 30 2013

References

  • I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.

Crossrefs

Cf. A055035, A023022 (alg. degree of cos(2*Pi/n)), A183919.

Programs

  • Mathematica
    a[4]=1; a[n_] := Module[{g=GCD[n, 8], e=EulerPhi[n]}, If[g<4, e, If[g==4, e/4, e/2]]]; Array[a, 1000]
    f[n_] := Exponent[ MinimalPolynomial[ Sin[ 2Pi/n]][x], x]; Array[f, 75] (* Robert G. Wilson v, Jul 28 2014 *)

Formula

a(4)=1, a(n)=phi(n) if gcd(n,8)<4; a(n)=phi(n)/4 if gcd(n,8)=4, and a(n)=phi(n)/2 if gcd(n,8)>4. Here phi(n)=A000010(n) (Euler totient). See the I. Niven reference, Theorem 3.9, p. 37-8. - Wolfdieter Lang, Jan 09 2011
a(n) = delta(c(n)/2) if c(n) = A178182(n) is even, and delta(c(n)) if c(n) is odd, with delta(n) = A055034(n), the degree of the algebraic number 2*cos(Pi/n). - Wolfdieter Lang, Nov 30 2013

A178182 Minimal polynomials of sin(2Pi/n) are mapped to those of cos(2Pi/a(n)).

Original entry on oeis.org

4, 4, 12, 1, 20, 12, 28, 8, 36, 20, 44, 6, 52, 28, 60, 16, 68, 36, 76, 5, 84, 44, 92, 24, 100, 52, 108, 14, 116, 60, 124, 32, 132, 68, 140, 9, 148, 76, 156, 40, 164, 84, 172, 22, 180, 92, 188, 48, 196, 100, 204, 13, 212, 108, 220, 56, 228, 116, 236, 30, 244, 124, 252, 64, 260, 132, 268, 17, 276, 140, 284, 72, 292, 148, 300, 38, 308, 156, 316, 80
Offset: 1

Views

Author

Wolfdieter Lang, Jan 11 2011

Keywords

Comments

The minimal polynomials of cos(2*Pi/n) are treated, e.g. in the Lehmer, Niven and Watkins-Zeitlin references. Lehmer and Niven call them psi_n(x) (eq. (1) and Lemma 3.8, p.37, respectively). In the latter reference they are called Psi_n(x), and we call them Psi(n,x). By definition (Niven, p. 28) these are monic, rational polynomials which have as a root cos(2*Pi/n) and are of minimal degree. They are irreducible (Niven p. 37, Lemma 3.8). See also A181875 for more details and a link with Psi(n,x), n=1..30.
The minimal polynomials of sin(2*Pi/n) are treated, e.g. in the Lehmer and Niven references. Lehmer's theorem 2 is, however, incorrect. See A181872 and the link there for a counterexample. In this link one can also find these polynomials, called Pi(n,x), for n=1..30.
The sequence a(n) translates these polynomials: Pi(n,x) = Psi(a(n),x), n >= 1. This translation is based on the trigonometric identity: sin(2*Pi/n) = cos(2*Pi*r(n)), with r(n):=|(4-n)/(4*n)|.
a(n):=denominator(r(n)) (in lowest terms). Note that the degrees agree with those given in the Niven reference, Theorem 3.9, p. 37.

Examples

			Pi(5,x) = Psi(20,x) because sin(2*Pi/5) = cos(2*Pi/20).
		

References

  • I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.

Crossrefs

Programs

Formula

a(n) = denominator(|(n-4)/(4*n)|), n >= 1.
a(n) = 4*n/gcd(n-4,16). a(n) = 4*n if n is odd; if n is even then a(n) = 2*n if n/2 == 1, 3, 5, 7 (mod 8), a(n) = n if n/2 == 0, 4 (mod 8), a(n) = n/2 if n/2 == 6 (mod 8) and a(n) = n/4 if n/2 == 2 (mod 8). - Wolfdieter Lang, Dec 01 2013
a(2*n)/(2*n) = 1/4, 1/2, 1, and 2, for n == 2 (mod 8), 6 (mod 8), 0 (mod 4), and 1 (mod 2), for n >= 1. The reciprocal can be used in a formula for the zeros of the minimal polynomials of 2*sin(Pi/2) (A228786). See A327921. - Wolfdieter Lang, Nov 02 2019

A228786 Table of coefficients of the minimal polynomials of 2*sin(Pi/n), n >= 1.

Original entry on oeis.org

0, 1, -2, 1, -3, 0, 1, -2, 0, 1, 5, 0, -5, 0, 1, -1, 1, -7, 0, 14, 0, -7, 0, 1, 2, 0, -4, 0, 1, -3, 0, 9, 0, -6, 0, 1, -1, 1, 1, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, 1, 0, -4, 0, 1, 13, 0, -91, 0, 182, 0, -156, 0, 65, 0, -13, 0, 1, 1, -2, -1, 1, 1, 0, -8, 0, 14, 0, -7, 0, 1, 2, 0, -16, 0, 20, 0, -8, 0, 1, 17, 0, -204, 0, 714, 0, -1122, 0, 935, 0, -442, 0, 119, 0, -17, 0, 1, 1, -3, 0, 1
Offset: 1

Views

Author

Wolfdieter Lang, Oct 07 2013

Keywords

Comments

s(n) := 2*sin(Pi/n) is, for n >= 2, the length ratio side/R of the regular n-gon inscribed in a circle of radius R. This algebraic number s(n), n >= 1, has the degree gamma(n) := A055035(n), and the row length of this table is gamma(n) + 1.
s(n) has been given in the power basis of the relevant algebraic number field in A228783 for even n (bisected into n == 0 (mod 4) and n == 2 (mod 4)), and in A228785 for odd n.
For the computation of the minimal polynomials ps(n,x), using the coefficients of s(n) in the relevant number field, and the conjugates of the corresponding algebraic numbers rho (giving the length ratios (smallest diagonal)/side in the relevant regular polygons see a comment on A228781. Note that the product of the gamma(n) linear factors (x - conjugates) has to be computed modulo the minimal polynomial of the relevant rho(k) = 2*cos(Pi/k) (called C(k,x=rho(k)) in A187360).
Thanks go to Seppo Mustonen, who asked a question about the square of the sum of all lengths in the regular n-gon, which led to this computation of s(n) and its minimal polynomial.
It would be interesting to find out which length ratios in the regular n-gon give the other positive zeros of the minimal polynomial ps(n,x). See some examples below.
The zeros of the row polynomials ps(n,x) are 2*cos(2*Pi*k/c(2*n))) for gcd(k, c(2*n)) = 1, where c(n) = A178182(n), and k from {0, ..., floor(c(2*n)/2)}, for n >= 1. The number of these solutions is gamma(n) = A055035(n). See the formula section. This results from the zeros of the minimal polynomials of sin(2*Pi/n), with coefficients given in A181872/A181873. - Wolfdieter Lang, Oct 30 2019

Examples

			The table a(n, m) starts:
n\m   0  1    2 3   4 5     6 7   8 9   10 12  13 14  15 16 17
1:    0  1
2:   -2  1
3:   -3  0    1
4:   -2  0    1
5:    5  0   -5 0   1
6:   -1  1
7:   -7  0   14 0  -7 0     1
8:    2  0   -4 0   1
9:   -3  0    9 0  -6 0     1
10:  -1  1    1
11: -11  0   55 0 -77 0    44 0 -11 0    1
12:   1  0   -4 0   1
13:  13  0  -91 0 182 0  -156 0  65 0  -13 0   1
14:   1 -2   -1 1
15:   1  0   -8 0  14 0    -7 0   1
16:   2  0  -16 0  20 0    -8 0   1
17:  17  0 -204 0 714 0 -1122 0 935 0 -442  0 119  0 -17  0  1
18:   1 -3    0 1
...
n = 19: [-19, 0, 285, 0, -1254, 0, 2508, 0, -2717, 0, 1729, 0, -665, 0, 152, 0, -19, 0, 1],
n = 20: [1, 0, -12, 0, 19, 0, -8, 0, 1]
n = 5: ps(5,x) = 5 -5*x^2 +1*x^4, with the zeros s(5) = sqrt(3 - tau), sqrt(2 + tau) = tau*s(5) and their negative values, where tau =rho(5) is the golden section. tau*s(5) is the length ratio diagonal/radius in the pentagon.
n = 7: ps(7,x) = -7 + 14*x^2 -7*x^4 + 1*x^6, with the positive zeros s(7) (side/R) about 0.868, s(7)*rho(7) (smallest diagonal/R) about 1.564, and s(7)*(rho(7)^2-1) (longer diagonal/R) about 1.950 in the heptagon inscribed in a circle with radius R.
n = 8: ps(8,x) = 2 -4*x^2 + x^4, with the positive zeros s(8) = sqrt(2-sqrt(2)) and rho(8) = sqrt(2+sqrt(2)) (smallest diagonal/side).
n = 10: ps(10,x) = -1 + x + x^2 with the positive zero s(10) = tau - 1 (the negative solution is -tau).
		

Crossrefs

Formula

a(n, m) = [x^m](minimal polynomial ps(n, x) of 2*sin(Pi/n) over the rationals), n >= 1, m = 0, ..., gamma(n), with gamma(n) = A055035(n).
ps(n,x) = Product_{k=0..floor(c(2*n)/n) and gcd(k, c(2*n)) = 1} (x - 2*cos(2*Pi*k/c(2*n)), with c(2*n) = A178182(2*n), for n >= 1. There are gamma(n) = A055035(n) zeros. - Wolfdieter Lang, Oct 30 2019

A231188 Coefficient table for the minimal polynomials of 2*sin(2*Pi/n). Rising powers of x.

Original entry on oeis.org

0, 1, 0, 1, -3, 0, 1, -2, 1, 5, 0, -5, 0, 1, -3, 0, 1, -7, 0, 14, 0, -7, 0, 1, -2, 0, 1, -3, 0, 9, 0, -6, 0, 1, 5, 0, -5, 0, 1, -11, 0, 55, 0, -77, 0, 44, 0, -11, 0, 1, -1, 1, 13, 0, -91, 0, 182, 0, -156, 0, 65, 0, -13, 0, 1, -7, 0, 14, 0, -7, 0, 1, 1, 0, -8, 0, 14, 0, -7, 0, 1, 2, 0, -4, 0, 1, 17, 0, -204, 0, 714, 0, -1122, 0, 935, 0, -442, 0, 119, 0, -17, 0, 1, -3, 0, 9, 0, -6, 0, 1
Offset: 1

Views

Author

Wolfdieter Lang, Nov 29 2013

Keywords

Comments

The length of row n is deg(n) + 1 = A093819(n) + 1, that is 2, 2, 3, 2, 5, 3, 7, 3, 7, 5, 11, 2, 13, 7, 9, 5, 17,...
See A181871 for the coefficient table for the integer but non-monic minimal polynomials of sin(2*Pi/n), n>=1, called there pi(n, x). The present minimal polynomials of 2*sin(2*Pi/n) are integer and monic, and they are given by
MP2sin2(n, x) = pi(n, x/2).

Examples

			The table a(n,m) starts:
---------------------------------------------------------------------------------
n\m   0   1    2  3    4  5     6  7    8  9    10  11   12  13   14 15 16 ...
1:    0   1
2:    0   1
3:   -3   0    1
4:   -2   1
5:    5   0   -5  0    1
6:   -3   0    1
7:   -7   0   14  0   -7  0     1
8:   -2   0    1
9:   -3   0    9  0   -6  0     1
10:   5   0   -5  0    1
11: -11   0   55  0  -77  0    44  0  -11  0     1
12:  -1   1
13:  13   0  -91  0  182  0  -156  0   65  0   -13   0    1
14:  -7   0   14  0   -7  0     1
15:   1   0   -8  0   14  0    -7  0    1
16:   2   0   -4  0    1
17:  17   0 -204  0  714  0 -1122  0  935  0  -442   0  119   0  -17  0  1
...
		

Crossrefs

Formula

a(n,m) = [x^m] MP2sin2(n, x), n>=1, m = 0, 1, ..., A093819(n), with the minimal polynomials of 2*sin(2*Pi/n), given above in a comment in terms of the ones for sin(2*Pi/n).

A181873 Denominators of coefficient array for minimal polynomials of sin(2Pi/n). Rising powers of x.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 1, 1, 16, 1, 4, 1, 1, 4, 1, 1, 64, 1, 8, 1, 4, 1, 1, 2, 1, 1, 64, 1, 16, 1, 2, 1, 1, 16, 1, 4, 1, 1, 1024, 1, 256, 1, 64, 1, 4, 1, 4, 1, 1, 2, 1, 4096, 1, 1024, 1, 128, 1, 16, 1, 16, 1, 4, 1, 1, 64, 1, 8, 1, 4, 1, 1, 256, 1, 8, 1, 8, 1, 4, 1, 1, 8, 1, 1, 1, 1, 65536, 1, 4096, 1, 2048, 1, 512, 1, 256, 1, 32, 1, 16, 1, 4, 1, 1, 64, 1, 16, 1, 2, 1, 1, 262144, 1, 65536, 1, 8192, 1, 1024, 1, 1024, 1, 256, 1, 64, 1, 2, 1, 4, 1, 1, 4, 2, 1, 4096, 1, 64, 1, 64, 1, 32, 1, 4, 1, 4, 1, 1, 1024, 1, 256, 1, 64, 1, 4, 1, 4, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jan 13 2011

Keywords

Comments

The corresponding numerator array is given in A181872(n,m) where details, references, and a W. Lang link are given.
The sequence of row lengths of this array is d(n)+1 with d(n)=A093819(n): [2, 2, 3, 4, 5, 3, 7, 3, 7, 5, 11,... ].

Examples

			[1, 1], [1, 1], [4, 1, 1], [1, 1], [16, 1, 4, 1, 1], [4, 1, 1], [64, 1, 8, 1, 4, 1, 1], [2, 1, 1], [64, 1, 16, 1, 2, 1, 1], [16, 1, 4, 1, 1],...
The rational coefficients A181872(n,m)/a(n,m) start with:
[0, 1], [0, 1], [-3/4, 0, 1], [-1, 1], [5/16, 0, -5/4, 0, 1], [-3/4, 0, 1], [-7/64, 0, 7/8, 0, -7/4, 0, 1], [-1/2, 0, 1], [-3/64, 0, 9/16, 0, -3/2, 0, 1],...
		

References

Crossrefs

Cf. A181875/A181876 (minimal polynomials of cos(2Pi/n)).
Cf. A181872.

Programs

  • Mathematica
    p[n_, x_] := MinimalPolynomial[ Sin[2 Pi/n], x]; Flatten[ Denominator[ Table[ coes = CoefficientList[ p[n, x], x]; coes / Last[coes], {n, 1, 22}]]] (* Jean-François Alcover, Nov 07 2011 *)

Formula

a(n,m)=denominator([x^m]Pi(n,x)), n>=1, m=0,1,...,d(n), with the d(n)=A093819(n), and Pi(n,x) the minimal polynomials of sin(2*Pi/n) given in A181872.

A181871 Coefficient array for integer polynomial version of minimal polynomials of sin(2*Pi/n). Rising powers of x.

Original entry on oeis.org

0, 2, 0, 2, -3, 0, 4, -2, 2, 5, 0, -20, 0, 16, -3, 0, 4, -7, 0, 56, 0, -112, 0, 64, -2, 0, 4, -3, 0, 36, 0, -96, 0, 64, 5, 0, -20, 0, 16, -11, 0, 220, 0, -1232, 0, 2816, 0, -2816, 0, 1024, -1, 2, 13, 0, -364, 0, 2912, 0, -9984, 0, 16640, 0, -13312, 0, 4096, -7, 0, 56, 0, -112, 0, 64, 1, 0, -32, 0, 224, 0, -448, 0, 256, 2, 0, -16, 0, 16, 17, 0, -816, 0, 11424, 0, -71808, 0, 239360, 0, -452608, 0, 487424, 0, -278528, 0, 65536, -3, 0, 36, 0, -96, 0, 64
Offset: 1

Views

Author

Wolfdieter Lang, Jan 14 2011

Keywords

Comments

The sequence of row lengths of this array is A093819(n)+1: [2, 2, 3, 2, 5, 3, 7, 3, 7, 5, 11, ...].
pi(n,x) := Sum_{m=0..d(n)} a(n,m)*x^m, n >= 1, is related to the (monic) minimal polynomial of sin(2*Pi/n), called Pi(n,x), by pi(n,x) = (2^d(n))*Pi(n,x), with the degree sequence d(n)=A093819(n), and Pi(n,x) is given in A181872/A181873.
Pi(n,x)=Psi(c(n),x) with the minimal polynomials Psi(n,x) of cos(2*Pi/n), and c(n):=A178182(n).
The minimal polynomials of sin(2*Pi/n) are, e.g., treated in the Lehmer and Niven references. (Note the mistake in the Lehmer references explained in the W. Lang link.) The fundamental polynomials Psi(n,x) are also studied in the Watkins-Zeitlin reference, where a recurrence is given.
See A231188 for the (monic and integer) minimal polynomials of 2*sin(2*Pi/n). = Wolfdieter Lang, Nov 30 2013

Examples

			[0, 2], [0, 2], [-3, 0, 4], [-2, 2], [5, 0, -20, 0, 16], [-3, 0, 4], [-7, 0, 56, 0, -112, 0, 64], [-2, 0, 4], [-3, 0, 36, 0, -96, 0, 64], [5, 0, -20, 0, 16], ...
pi(2,x) = (2^1)*Pi(2,x) = 2*Psi(c(2),x) = 2*Psi(4,x) = 2*x.
		

References

  • I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons..

Crossrefs

Cf. A181877 (cos(2*Pi/n) case), A231188 (2*sin(2*Pi/n) case).

Programs

  • Mathematica
    ro[n_] := (cc = CoefficientList[ p = MinimalPolynomial[ Sin[2*(Pi/n)], x], x]; 2^Exponent[p, x]*(cc/Last[cc])); Flatten[ Table[ ro[n], {n, 1, 18}]] (* Jean-François Alcover, Sep 28 2011 *)

Formula

a(n,m) = [x^m]pi(n,x), n >= 1, m=0..A093819(n), and pi(n,x) defined above in the comments.
Showing 1-7 of 7 results.