A181878 Coefficient array for square of Chebyshev S-polynomials.
1, 1, 1, -2, 1, 4, -4, 1, 1, -6, 11, -6, 1, 9, -24, 22, -8, 1, 1, -12, 46, -62, 37, -10, 1, 16, -80, 148, -128, 56, -12, 1, 1, -20, 130, -314, 367, -230, 79, -14, 1, 25, -200, 610, -920, 771, -376, 106, -16, 1, 1, -30, 295, -1106, 2083, -2232, 1444, -574, 137, -18, 1, 36, -420, 1897, -4352, 5776, -4744, 2486, -832, 172, -20, 1, 1, -42, 581, -3108, 8518, -13672, 13820, -9142, 4013, -1158, 211, -22, 1
Offset: 0
Examples
The irregular triangle a(n,m) begins: n\m 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 2: 1 -2 1 3: 4 -4 1 4: 1 -6 11 -6 1 5: 9 -24 22 -8 1 6: 1 -12 46 -62 37 -10 1 7: 16 -80 148 -128 56 -12 1 8: 1 -20 130 -314 367 -230 79 -14 1 9: 25 -200 610 -920 771 -376 106 -16 1 10: 1 -30 295 -1106 2083 -2232 1444 -574 137 -18 1 ... Reformatted and extended by _Wolfdieter Lang_, Nov 24 2012
Links
- Wolfdieter Lang, First ten rows with more details and proofs.
Programs
-
Mathematica
Join[{{1}, {1}}, CoefficientList[Table[ChebyshevU[n, Sqrt[x]/2]^2, {n, 2, 10}], x]] // Flatten (* Eric W. Weisstein, Apr 04 2018 *) Join[{{1}, {1}}, CoefficientList[ChebyshevU[Range[2, 10], Sqrt[x]/2]^2, x]] // Flatten (* Eric W. Weisstein, Apr 04 2018 *)
Formula
a(2*k,m) = (-1)^m*Sum_{j=0..k} binomial(2*k+m-1-2*j, 2*m-1), k >= 0.
a(2*k+1,m) = (-1)^m*Sum_{j=0..k} binomial(2*k+1+m-2*j, 2*m+1), k >= 0.
This derives from the formula for the entries of the Riordan array A158454.
For the o.g.f.s see the comment.
Extensions
Corrected by Wolfdieter Lang, Jan 21 2011
Comments