A181925 Area A of the triangles such that A, the sides, and at least one of the three bisectors are integers.
12, 48, 60, 108, 120, 168, 192, 240, 300, 360, 420, 432, 480, 540, 588, 660, 672, 768, 960, 972, 1008, 1080, 1092, 1200, 1260, 1344, 1440, 1452, 1500, 1512, 1680, 1728, 1848, 1920, 1980, 2028, 2160, 2352, 2448, 2520, 2640, 2688, 2700, 2772, 2940, 3000
Offset: 1
Keywords
Examples
Case (i): 12 is in the sequence because the area of the isosceles triangle (5, 5, 6) equals 12 and one of the bisectors is an integer (4). But the isosceles triangle (546, 975, 975) whose area equals 255528 contains three integer bisectors: 936, 560, 560. Case (ii): The right triangle (28, 96, 100) => A = 1344, and the integer median is m = 35. Case (iii): The triangle (31091676, 46267375, 62553491) => A = 690494511777840, and the three bisectors are 51555075, 38342304 and 22314600.
References
- Ralph H. Buchholz, On triangles with rational altitudes, angles bisectors or medians, PhD Thesis, University of Newcastle, Nov 1989.
Links
- Ralph H. Buchholz, Triangles with two integer medians
- Eric Weisstein's World of Mathematics, Angle Bisectors
Programs
-
Maple
with(numtheory):T:=array(1..1000):k:=0:nn:=300:for a from 1 to nn do: for b from a to nn do: for c from b to nn do:p:=(a+b+c)/2:s:=p*(p-a)*(p-b)*(p-c):aa:=b*c*(b+c-a)*(a+b+c): bb:=a*c*(a+c-b)*(a+b+c): cc:=a*b*(a+b-c)*(a+b+c):if s>0 and aa>0 and bb>0 and cc>0 then s1:=sqrt(s): aa1:=sqrt(aa)/(b+c): bb1:=sqrt(bb)/(a+c): cc1:=sqrt(cc)/(a+b):if s1=floor(s1) and (aa1=floor(aa1) or bb1=floor(bb1) or cc1=floor(cc1)) then k:=k+1:T[k]:=s1:else fi:fi:od:od:od: L := [seq(T[i],i=1..k)]:L1:=convert(T,set):A:=sort(L1, `<`): print(A):
-
Mathematica
nn=300; lst={}; Do[s=(a+b+c)/2; If[IntegerQ[s], area2=s (s-a) (s-b) (s-c); aa=b*c*(b+c-a)*(a+b+c); bb=a*c*(a+c-b)*(a+b+c); cc=a*b*(a+b-c)*(a+b+c); If[0 < area2 && aa > 0 && bb > 0 && cc > 0 && IntegerQ[Sqrt[area2]] && (IntegerQ[Sqrt[aa]/(b+c)] || IntegerQ[Sqrt[bb]/(a+c)] || IntegerQ[Sqrt[cc]/(a+b)]), AppendTo[lst, Sqrt[area2]]]], {a,nn}, {b,a}, {c,b}]; Union[lst]
Comments