A181935 Curling number of binary expansion of n.
1, 1, 1, 2, 2, 1, 1, 3, 3, 1, 2, 2, 2, 1, 1, 4, 4, 1, 1, 2, 2, 2, 1, 3, 3, 1, 2, 2, 2, 1, 1, 5, 5, 1, 1, 2, 2, 2, 1, 3, 3, 1, 3, 2, 2, 2, 1, 4, 4, 1, 1, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 1, 1, 6, 6, 1, 1, 2, 2, 2, 1, 3, 3, 2, 2, 2, 2, 1, 1, 4, 4, 1, 2, 2, 2, 3
Offset: 0
Examples
731 = 1011011011 in binary, which we could write as XY^2 with X = 10110110 and Y = 1, or as XY^3 with X = 1 and Y = 011. The latter is better, giving k = 3, so a(713) = 3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..8191
- Benjamin Chaffin, John P. Linderman, N. J. A. Sloane, and Allan R. Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
- Index entries for sequences related to binary expansion of n.
Crossrefs
Programs
-
Haskell
import Data.List (unfoldr, inits, tails, stripPrefix) import Data.Maybe (fromJust) a181935 0 = 1 a181935 n = curling $ unfoldr (\x -> if x == 0 then Nothing else Just $ swap $ divMod x 2) n where curling zs = maximum $ zipWith (\xs ys -> strip 1 xs ys) (tail $ inits zs) (tail $ tails zs) where strip i us vs | vs' == Nothing = i | otherwise = strip (i + 1) us $ fromJust vs' where vs' = stripPrefix us vs -- Reinhard Zumkeller, May 16 2012
-
Mathematica
f[n_, e_] := Module[{d = IntegerDigits[n, 2^e]}, Length[Split[d][[-1]]] - If[SameQ @@ d && Mod[n, 2^e] < 2^(e-1), 1, 0]]; a[n_] := Max[Table[f[n, e], {e, Range[Max[1, Floor[Log2[n]]]]}]]; a[0] = 1; Array[a, 100, 0] (* Amiram Eldar, Apr 08 2025 *)
Formula
A212439(n) = 2*n + a(n) mod 2. - Reinhard Zumkeller, May 17 2012
Comments