cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181968 a(n) = 54n^3 - 1.

Original entry on oeis.org

53, 431, 1457, 3455, 6749, 11663, 18521, 27647, 39365, 53999, 71873, 93311, 118637, 148175, 182249, 221183, 265301, 314927, 370385, 431999, 500093, 574991, 657017, 746495, 843749, 949103, 1062881, 1185407, 1317005, 1457999, 1608713, 1769471, 1940597, 2122415
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 06 2012

Keywords

Comments

a(n) is coprime to 27*n^3*(27*n^3 - 1) - 2 = A016767(n)*(A016767(n)-1) - 2.
x^3 + y^3 + z^3 = w^3 has infinitely many solutions, where every pair of elements x, y and z are coprime.
This follows from the identity a(n)^3 + (A016767(n)+1)^3 + (A016768(n)-A008588(n))^3 = (A016768(n)+A008585(n))^3 for n >= 1.

References

  • Wacław Sierpiński, Czym sie zajmuje teoria liczb. Warsaw: PW "Wiedza Powszechna", 1957, pp. 59-60.

Crossrefs

Programs

  • Magma
    [ 54*n^3-1 : n in [1..34]];
    
  • Maple
    seq(54*n^3-1, n=1..34);
  • Mathematica
    Table[54*n^3 - 1, {n, 34}]
  • PARI
    vector(34, n, 54*n^3-1)

Formula

For n >= 1, a(n) = 54*A000578(n) - 1 = 2*A016767(n) - 1.
G.f.: (-1 + 57*x + 213*x^2 + 55*x^3)/(1 - x)^4.