cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181970 Places of nonprimes in A050376.

Original entry on oeis.org

3, 6, 9, 13, 20, 28, 37, 47, 63, 71, 83, 111, 127, 160, 177, 235, 280, 301, 348, 377, 430, 509, 542, 633, 700, 731, 838, 875, 915, 1030, 1194, 1284, 1327, 1415, 1458, 1559, 1752, 1915, 2015, 2181, 2231, 2531, 2590, 2773, 2960, 3089, 3154, 3289, 3485, 3562, 3919, 3997, 4142
Offset: 1

Views

Author

Vladimir Shevelev, Apr 06 2012

Keywords

Comments

Or numbers not expressed in the form pi(p) + pi(sqrt(p)) + pi((sqrt(sqrt(p)))) +... with prime p.

Examples

			Show that 28 not expressed in form pi(p) + pi(sqrt(p)) + pi((sqrt(sqrt(p)))) +... with prime p. Indeed, for p=79, this sum is 22+4+1=27, while for p=83, it is 23+4+2=29.
		

Crossrefs

Programs

  • PARI
    first_few(lim)=my(v=List(apply(n->n^2, primes(primepi(sqrtint(lim))))),u,t); forprime(p=2,(lim+.5)^(1/4),t=p^2;while((t=t^2)<=lim,listput(v,t)));listput(v,1);v=vecsort(Vec(v));u=vector(#v-1,i,sum(j=v[i]+1,v[i+1]-1,isprime(j)));u[1]++;for(i=2, #u, u[i]+=u[i-1]+1);u \\ Charles R Greathouse IV, Apr 10 2012
    
  • Python
    from sympy import primepi, integer_nthroot
    def A181970(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 18-19 2025

Formula

a(n) ~ 0.5 n^2 log n. - Charles R Greathouse IV, Apr 11 2012

Extensions

a(30)-a(53) from Charles R Greathouse IV, Apr 10 2012