A181985 Generalized Euler numbers. Square array A(n,k), n >= 1, k >= 0, read by antidiagonals. A(n,k) = n-alternating permutations of length n*k.
1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 19, 61, 1, 1, 1, 69, 1513, 1385, 1, 1, 1, 251, 33661, 315523, 50521, 1, 1, 1, 923, 750751, 60376809, 136085041, 2702765, 1, 1, 1, 3431, 17116009, 11593285251, 288294050521, 105261234643, 199360981, 1
Offset: 1
Examples
n\k [0][1] [2] [3] [4] [5] [1] 1, 1, 1, 1, 1, 1 [2] 1, 1, 5, 61, 1385, 50521 [A000364] [3] 1, 1, 19, 1513, 315523, 136085041 [A002115] [4] 1, 1, 69, 33661, 60376809, 288294050521 [A211212] [5] 1, 1, 251, 750751, 11593285251, 613498040952501 [6] 1, 1, 923, 17116009, 2301250545971, 1364944703949044401 [A030662][A211213] [A181991] The (n,n)-diagonal is A181992.
Links
- Peter Luschny, An old operation on sequences: the Seidel transform.
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [USA access only through the HATHI TRUST Digital Library]
- Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Access through ZOBODAT]
Programs
-
Maple
A181985_list := proc(n, len) local E, dim, i, k; dim := n*(len-1); E := array(0..dim, 0..dim); E[0, 0] := 1; for i from 1 to dim do if i mod n = 0 then E[i, 0] := 0 ; for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od; else E[0, i] := 0; for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od; fi od; seq(E[0, n*k], k=0..len-1) end: for n from 1 to 6 do print(A181985_list(n, 6)) od;
-
Mathematica
nmax = 9; A181985[n_, len_] := Module[{e, dim = n*(len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0 , e[i, 0] = 0 ; For[k = i-1, k >= 0, k--, e[k, i-k] = e[k+1, i-k-1] + e[k, i-k-1] ], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i-k] = e[k-1, i-k+1] + e[k-1, i-k] ]; ]]; Table[e[0, n*k], { k, 0, len-1}]]; t = Table[A181985[n, nmax], {n, 1, nmax}]; a[n_, k_] := t[[n, k+1]]; Table[a[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 27 2013, translated and adapted from Maple *)
-
Sage
def A181985(m, n): shapes = ([x*m for x in p] for p in Partitions(n)) return (-1)^n*sum((-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes) for m in (1..6): print([A181985(m, n) for n in (0..7)]) # Peter Luschny, Aug 10 2015
Comments