A211212
4-alternating permutations of length 4n.
Original entry on oeis.org
1, 1, 69, 33661, 60376809, 288294050521, 3019098162602349, 60921822444067346581, 2159058013333667522020689, 125339574046311949415000577841, 11289082167259099068433198467575829, 1510335441937894173173702826484473600301
Offset: 0
-
A211212 := proc(n) local E, dim, i, k; dim := 4*(n-1);
E := array(0..dim, 0..dim); E[0, 0] := 1;
for i from 1 to dim do
if i mod 4 = 0 then E[i, 0] := 0 ;
for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
else E[0, i] := 0;
for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
fi od;
E[0, dim] end:
seq(A211212(i), i = 1..12);
A211212_list := proc(size) local E, S;
E := 2*exp(x*z)/(cosh(z)+cos(z));
S := z -> series(E, z, 4*(size+1));
seq((-1)^n*(4*n)!*subs(x=0, coeff(S(z), z, 4*n)), n=0..size-1) end:
A211212_list(12); # Peter Luschny, Jun 06 2016
-
A181985[n_, len_] := Module[{e, dim = n (len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0, e[i, 0] = 0; For[k = i - 1, k >= 0, k--, e[k, i - k] = e[k + 1, i - k - 1] + e[k, i - k - 1]], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i - k] = e[k - 1, i - k + 1] + e[k - 1, i - k]]]]; Table[e[0, n k], {k, 0, len - 1}]];
a[n_] := A181985[4, n + 1] // Last;
Table[a[n], {n, 0, 11}] (* Jean-François Alcover, Jun 29 2019 *)
-
# uses[A from A181936]
A211212 = lambda n: A(4,4*n)*(-1)^n
print([A211212(n) for n in (0..11)]) # Peter Luschny, Jan 24 2017
A181991
n-alternating permutations of length 4n.
Original entry on oeis.org
1, 1385, 315523, 60376809, 11593285251, 2301250545971, 472105349529479, 99537885358650089, 21451428576293883859, 4705284467293276073635, 1047067375984978044542143, 235809039854522043890582835, 53644722291938408687646120103, 12309355014854205055828909176039
Offset: 1
-
A181991 := proc(n) local E, dim, i, k; dim := 4*n;
E := array(0..dim, 0..dim); E[0, 0] := 1;
for i from 1 to dim do
if i mod n = 0 then E[i, 0] := 0 ;
for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
else E[0, i] := 0;
for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
fi od; E[0, dim] end:
seq(A181991(n), n = 1..14);
# Alternatively:
a := (x) -> (4*x)!*(-1/(4*x)!+2/x!/(3*x)!+1/(2*x)!^2-3/x!^2/(2*x)!+1/x!^4):
seq(a(n), n=1..14); # Peter Luschny, Aug 13 2015
-
A181985[n_, len_] := Module[{e, dim = n*(len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0, e[i, 0] = 0; For[k = i - 1, k >= 0, k--, e[k, i - k] = e[k + 1, i - k - 1] + e[k, i - k - 1]], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i - k] = e[k - 1, i - k + 1] + e[k - 1, i - k]]]]; Table[e[0, n*k], {k, 0, len - 1}]]; a[n_] := A181985[n, 4 + 1][[4 + 1]]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 17 2013, after Maple code in A181985 *)
A211213
n-alternating permutations of length 3n.
Original entry on oeis.org
1, 61, 1513, 33661, 750751, 17116009, 398840401, 9464040829, 227864057851, 5550936701311, 136526608389601, 3384729259165801, 84478081828015513, 2120572560190269841, 53494979095639780513, 1355345459896317255037, 34469858667289041256051, 879619727291950363099291
Offset: 1
-
A211213 := proc(n) local E, dim, i, k; dim := 3*n;
E := array(0..dim, 0..dim); E[0, 0] := 1;
for i from 1 to dim do
if i mod n = 0 then E[i, 0] := 0 ;
for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
else E[0, i] := 0;
for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
fi od; E[0, dim] end:
seq(A211213(n), n = 1..18);
# Alternatively:
a := x -> (3*x)!*(1/(3*x)!-2/(x!*(2*x)!)+1/(x!)^3):
seq(a(n),n=1..18); # Peter Luschny, Aug 13 2015
-
nmax = 18; a[n_] := Module[{e, dim = n*(nmax-1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0 , e[i, 0] = 0; For[k = i-1, k >= 0, k--, e[k, i-k] = e[k+1, i-k-1] + e[k, i-k-1] ], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i-k] = e[k-1, i-k+1] + e[k-1, i-k] ] ]]; e[0, 3*n]] ; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Jul 26 2013, after Maple *)
A292604
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).
Original entry on oeis.org
1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5 6]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 5, 1, 0]
[3][ 61, 28, 1, 0]
[4][ 1385, 1011, 123, 1, 0]
[5][ 50521, 50666, 11706, 506, 1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
- G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292604_row := proc(n) if n = 0 then return [1] fi;
add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292604_row(n) od;
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
-
def A292604_row(n):
if n == 0: return [1]
S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..6): print(A292604_row(n))
A292605
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{3;n}(x).
Original entry on oeis.org
1, 1, 0, 19, 1, 0, 1513, 166, 1, 0, 315523, 52715, 1361, 1, 0, 136085041, 30543236, 1528806, 10916, 1, 0, 105261234643, 29664031413, 2257312622, 42421946, 87375, 1, 0, 132705221399353, 45011574747714, 4637635381695, 153778143100, 1156669095, 699042, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 19, 1, 0]
[3][ 1513, 166, 1, 0]
[4][ 315523, 52715, 1361, 1, 0]
[5][ 136085041, 30543236, 1528806, 10916, 1, 0]
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f),x):
A292605_row := proc(n) if n = 0 then return [1] fi;
add(A278073(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292605_row(n) od;
-
# uses[A278073_row from A278073]
def A292605_row(n):
if n == 0: return [1]
L = A278073_row(n)
S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..5): print(A292605_row(n))
A292606
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{4;n}(x).
Original entry on oeis.org
1, 1, 0, 69, 1, 0, 33661, 988, 1, 0, 60376809, 2669683, 16507, 1, 0, 288294050521, 17033188586, 212734266, 261626, 1, 0, 3019098162602349, 223257353561605, 4297382231090, 17634518610, 4196345, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5]
--------------------------------------------------
[0] [ 1]
[1] [ 1, 0]
[2] [ 69, 1, 0]
[3] [ 33661, 988, 1, 0]
[4] [ 60376809, 2669683, 16507, 1, 0]
[5] [288294050521, 17033188586, 212734266, 261626, 1, 0]
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292606_row := proc(n) if n = 0 then return [1] fi;
add(A278074(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292606_row(n) od;
-
# uses[A278074_row from A278074]
def A292606_row(n):
if n == 0: return [1]
L = A278074_row(n)
S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..5): print(A292606_row(n))
A181992
n-alternating permutations of length n^2.
Original entry on oeis.org
1, 1, 5, 1513, 60376809, 613498040952501, 2655748106132754540814283, 7350748555338515554166266981278924209, 18155845241010181420704703186769135339279915667193169, 53121946985233865823079732996510797894348260342024814486694637630897821
Offset: 0
-
A181992 := proc(n) local E, dim, i, k; dim := n*n;
E := array(0..dim, 0..dim); E[0, 0] := 1;
for i from 1 to dim do
if i mod n = 0 then E[i, 0] := 0 ;
for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
else E[0, i] := 0;
for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
fi od;
E[0, dim] end:
seq(A181992(i),i=0..9);
-
A181985[n_, len_] := Module[{e, dim = n*(len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0, e[i, 0] = 0; For[k = i - 1, k >= 0, k--, e[k, i - k] = e[k + 1, i - k - 1] + e[k, i - k - 1]], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i - k] = e[k - 1, i - k + 1] + e[k - 1, i - k]]]]; Table[e[0, n*k], {k, 0, len - 1}]]; a[n_] := A181985[n, n + 1][[n + 1]]; Table[a[n], {n, 1, 14}] (* Jean-François Alcover, Dec 17 2013, after Maple code in A181985 *)
Showing 1-7 of 7 results.
Comments