Original entry on oeis.org
1, 1, 68, 32674, 57723632, 271473334576, 2800120560949568, 55651949496456964624, 1942583997186585626968832, 111073820056887200817614238976, 9853491064021356425337726078215168, 1298413151833835358460655821358916826624, 245239739577111045856575275575622149212434432
Offset: 0
A292604
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).
Original entry on oeis.org
1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5 6]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 5, 1, 0]
[3][ 61, 28, 1, 0]
[4][ 1385, 1011, 123, 1, 0]
[5][ 50521, 50666, 11706, 506, 1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
- G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292604_row := proc(n) if n = 0 then return [1] fi;
add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292604_row(n) od;
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
-
def A292604_row(n):
if n == 0: return [1]
S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..6): print(A292604_row(n))
A292605
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{3;n}(x).
Original entry on oeis.org
1, 1, 0, 19, 1, 0, 1513, 166, 1, 0, 315523, 52715, 1361, 1, 0, 136085041, 30543236, 1528806, 10916, 1, 0, 105261234643, 29664031413, 2257312622, 42421946, 87375, 1, 0, 132705221399353, 45011574747714, 4637635381695, 153778143100, 1156669095, 699042, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 19, 1, 0]
[3][ 1513, 166, 1, 0]
[4][ 315523, 52715, 1361, 1, 0]
[5][ 136085041, 30543236, 1528806, 10916, 1, 0]
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f),x):
A292605_row := proc(n) if n = 0 then return [1] fi;
add(A278073(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292605_row(n) od;
-
# uses[A278073_row from A278073]
def A292605_row(n):
if n == 0: return [1]
L = A278073_row(n)
S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..5): print(A292605_row(n))
Showing 1-3 of 3 results.
Comments