cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A292607 Alternating rows sums of A292606.

Original entry on oeis.org

1, 1, 68, 32674, 57723632, 271473334576, 2800120560949568, 55651949496456964624, 1942583997186585626968832, 111073820056887200817614238976, 9853491064021356425337726078215168, 1298413151833835358460655821358916826624, 245239739577111045856575275575622149212434432
Offset: 0

Views

Author

Peter Luschny, Sep 26 2017

Keywords

Crossrefs

Cf. A292606.

Programs

  • Maple
    a := proc(n) A292606_row(n); add((-1)^k*%[k+1], k=0..n) end: seq(a(n), n=0..12);

A292604 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).

Original entry on oeis.org

1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 20 2017

Keywords

Comments

The generalized Eulerian polynomials F_{m}(x) are defined F_{m; 0}(x) = 1 for all m >= 0 and for n > 0:
F_{0; n}(x) = Sum_{k=0..n} A097805(n, k)*(x-1)^(n-k) with coeffs. in A129186.
F_{1; n}(x) = Sum_{k=0..n} A131689(n, k)*(x-1)^(n-k) with coeffs. in A173018.
F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) with coeffs. in A292604.
F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) with coeffs. in A292605.
F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) with coeffs. in A292606.
The case m = 1 are the Eulerian polynomials whose coefficients are the Eulerian numbers which are displayed in Euler's triangle A173018.
Evaluated at x in {-1, 1, 0} these families of polynomials give for the first few m:
F_{m} : F_{0} F_{1} F_{2} F_{3} F_{4}
x = 1: A000012 A000142 A000680 A014606 A014608 ... (m*n)!/m!^n
x = 0: -- A000012 A000364 A002115 A211212 ... m-alternating permutations of length m*n.
Note that the constant terms of the polynomials are the generalized Euler numbers as defined in A181985. In this sense generalized Euler numbers are also generalized Eulerian numbers.

Examples

			Triangle starts:
[n\k][    0        1        2       3     4  5  6]
--------------------------------------------------
[0][      1]
[1][      1,       0]
[2][      5,       1,       0]
[3][     61,      28,       1,      0]
[4][   1385,    1011,     123,      1,    0]
[5][  50521,   50666,   11706,    506,    1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
		

References

  • G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.

Crossrefs

F_{0} = A129186, F_{1} = A173018, F_{2} is this triangle, F_{3} = A292605, F_{4} = A292606.
First column: A000364. Row sums: A000680. Alternating row sums: A002105.

Programs

  • Maple
    Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
    A292604_row := proc(n) if n = 0 then return [1] fi;
    add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
    for n from 0 to 6 do A292604_row(n) od;
  • Mathematica
    T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
    F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
    row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
    Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
  • Sage
    def A292604_row(n):
        if n == 0: return [1]
        S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
        return expand(S).list() + [0]
    for n in (0..6): print(A292604_row(n))

Formula

F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) for n>0 and F_{2; 0}(x) = 1.

A292605 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{3;n}(x).

Original entry on oeis.org

1, 1, 0, 19, 1, 0, 1513, 166, 1, 0, 315523, 52715, 1361, 1, 0, 136085041, 30543236, 1528806, 10916, 1, 0, 105261234643, 29664031413, 2257312622, 42421946, 87375, 1, 0, 132705221399353, 45011574747714, 4637635381695, 153778143100, 1156669095, 699042, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 20 2017

Keywords

Comments

See the comments in A292604.

Examples

			Triangle starts:
[n\k][       0         1         2       3  4  5]
--------------------------------------------------
[0][         1]
[1][         1,        0]
[2][        19,        1,        0]
[3][      1513,      166,        1,     0]
[4][    315523,    52715,     1361,     1,  0]
[5][ 136085041, 30543236,  1528806, 10916,  1, 0]
		

Crossrefs

F_{0} = A129186, F_{1} = A173018, F_{2} = A292604, F_{3} is this triangle, F_{4} = A292606.
First column: A002115. Row sums: A014606. Alternating row sums: A292609.

Programs

  • Maple
    Coeffs := f -> PolynomialTools:-CoefficientList(expand(f),x):
    A292605_row := proc(n) if n = 0 then return [1] fi;
    add(A278073(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
    for n from 0 to 6 do A292605_row(n) od;
  • Sage
    # uses[A278073_row from A278073]
    def A292605_row(n):
        if n == 0: return [1]
        L = A278073_row(n)
        S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
        return expand(S).list() + [0]
    for n in (0..5): print(A292605_row(n))

Formula

F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) for n>0 and F_{3; 0}(x) = 1.
Showing 1-3 of 3 results.