A278074
Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 4.
Original entry on oeis.org
1, 0, 1, 0, 1, 70, 0, 1, 990, 34650, 0, 1, 16510, 2702700, 63063000, 0, 1, 261630, 213519150, 17459442000, 305540235000, 0, 1, 4196350, 17651304000, 4350310965000, 231905038365000, 3246670537110000
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 1, 70]
[0, 1, 990, 34650]
[0, 1, 16510, 2702700, 63063000]
[0, 1, 261630, 213519150, 17459442000, 305540235000]
-
P := proc(m,n) option remember; if n = 0 then 1 else
add(binomial(m*n,m*k)* P(m,n-k)*x, k=1..n) fi end:
for n from 0 to 6 do PolynomialTools:-CoefficientList(P(4,n), x) od;
# Alternatively:
A278074_row := proc(n) 1/(1-t*((cosh(x)+cos(x))/2-1)); expand(series(%,x,4*n+1));
(4*n)!*coeff(%,x,4*n); PolynomialTools:-CoefficientList(%,t) end:
for n from 0 to 5 do A278074_row(n) od;
-
With[{m = 4}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 24, m}]];
Function[arg, CoefficientList[arg, t]] /@ % // Flatten
-
# uses [P from A278073]
def A278074_row(n): return list(P(4, n))
for n in (0..6): print(A278074_row(n)) # Peter Luschny, Mar 24 2020
A181985
Generalized Euler numbers. Square array A(n,k), n >= 1, k >= 0, read by antidiagonals. A(n,k) = n-alternating permutations of length n*k.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 19, 61, 1, 1, 1, 69, 1513, 1385, 1, 1, 1, 251, 33661, 315523, 50521, 1, 1, 1, 923, 750751, 60376809, 136085041, 2702765, 1, 1, 1, 3431, 17116009, 11593285251, 288294050521, 105261234643, 199360981, 1
Offset: 1
n\k [0][1] [2] [3] [4] [5]
[1] 1, 1, 1, 1, 1, 1
[2] 1, 1, 5, 61, 1385, 50521 [A000364]
[3] 1, 1, 19, 1513, 315523, 136085041 [A002115]
[4] 1, 1, 69, 33661, 60376809, 288294050521 [A211212]
[5] 1, 1, 251, 750751, 11593285251, 613498040952501
[6] 1, 1, 923, 17116009, 2301250545971, 1364944703949044401
[A030662][A211213] [A181991]
The (n,n)-diagonal is A181992.
-
A181985_list := proc(n, len) local E, dim, i, k;
dim := n*(len-1); E := array(0..dim, 0..dim); E[0, 0] := 1;
for i from 1 to dim do
if i mod n = 0 then E[i, 0] := 0 ;
for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
else E[0, i] := 0;
for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
fi od;
seq(E[0, n*k], k=0..len-1) end:
for n from 1 to 6 do print(A181985_list(n, 6)) od;
-
nmax = 9; A181985[n_, len_] := Module[{e, dim = n*(len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0 , e[i, 0] = 0 ; For[k = i-1, k >= 0, k--, e[k, i-k] = e[k+1, i-k-1] + e[k, i-k-1] ], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i-k] = e[k-1, i-k+1] + e[k-1, i-k] ]; ]]; Table[e[0, n*k], { k, 0, len-1}]]; t = Table[A181985[n, nmax], {n, 1, nmax}]; a[n_, k_] := t[[n, k+1]]; Table[a[n-k, k], {n, 1, nmax}, {k, 0, n-1}] // Flatten (* Jean-François Alcover, Jun 27 2013, translated and adapted from Maple *)
-
def A181985(m, n):
shapes = ([x*m for x in p] for p in Partitions(n))
return (-1)^n*sum((-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s).cardinality() for s in shapes)
for m in (1..6): print([A181985(m, n) for n in (0..7)]) # Peter Luschny, Aug 10 2015
A292604
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).
Original entry on oeis.org
1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5 6]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 5, 1, 0]
[3][ 61, 28, 1, 0]
[4][ 1385, 1011, 123, 1, 0]
[5][ 50521, 50666, 11706, 506, 1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
- G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292604_row := proc(n) if n = 0 then return [1] fi;
add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292604_row(n) od;
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
-
def A292604_row(n):
if n == 0: return [1]
S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..6): print(A292604_row(n))
A292606
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{4;n}(x).
Original entry on oeis.org
1, 1, 0, 69, 1, 0, 33661, 988, 1, 0, 60376809, 2669683, 16507, 1, 0, 288294050521, 17033188586, 212734266, 261626, 1, 0, 3019098162602349, 223257353561605, 4297382231090, 17634518610, 4196345, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5]
--------------------------------------------------
[0] [ 1]
[1] [ 1, 0]
[2] [ 69, 1, 0]
[3] [ 33661, 988, 1, 0]
[4] [ 60376809, 2669683, 16507, 1, 0]
[5] [288294050521, 17033188586, 212734266, 261626, 1, 0]
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292606_row := proc(n) if n = 0 then return [1] fi;
add(A278074(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292606_row(n) od;
-
# uses[A278074_row from A278074]
def A292606_row(n):
if n == 0: return [1]
L = A278074_row(n)
S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..5): print(A292606_row(n))
A327024
Ordered set partitions of the set {1, 2, ..., 4*n} with all block sizes divisible by 4, irregular triangle T(n, k) for n >= 0 and 0 <= k < A000041(n), read by rows.
Original entry on oeis.org
1, 1, 1, 70, 1, 990, 34650, 1, 3640, 12870, 2702700, 63063000, 1, 9690, 251940, 26453700, 187065450, 17459442000, 305540235000, 1, 21252, 1470942, 2704156, 154448910, 8031343320, 9465511770, 374796021600, 3975514943400, 231905038365000, 3246670537110000
Offset: 0
Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1; 70]
[3] [1; 990; 34650]
[4] [1; 3640, 12870; 2702700; 63063000]
[5] [1; 9690, 251940; 26453700, 187065450; 17459442000; 305540235000]
[6] [1; 21252, 1470942, 2704156; 154448910, 8031343320, 9465511770;
374796021600, 3975514943400; 231905038365000; 3246670537110000]
.
T(4, 1) = 3640 because [12, 4] is the integer partition 4*P(4, 1) in the canonical order and there are 1820 set partitions which have the shape [12, 4]. Finally, since the order of the sets is taken into account, one gets 2!*1820 = 3640.
A260877
Square array read by ascending antidiagonals: number of m-shape Euler numbers.
Original entry on oeis.org
1, 1, -1, 1, -1, 1, 1, -1, 1, -5, 1, -1, 5, -1, 21, 1, -1, 19, -61, 1, -105, 1, -1, 69, -1513, 1385, -1, 635, 1, -1, 251, -33661, 315523, -50521, 1, -4507, 1, -1, 923, -750751, 60376809, -136085041, 2702765, -1, 36457, 1, -1, 3431, -17116009, 11593285251
Offset: 1
[ n ] [0 1 2 3 4 5 6]
[ m ] --------------------------------------------------------------
[ 0 ] [1, -1, 1, -5, 21, -105, 635] A260845
[ 1 ] [1, -1, 1, -1, 1, -1, 1] A033999
[ 2 ] [1, -1, 5, -61, 1385, -50521, 2702765] A028296
[ 3 ] [1, -1, 19, -1513, 315523, -136085041, 105261234643] A002115
[ 4 ] [1, -1, 69, -33661, 60376809, -288294050521, 3019098162602349] A211212
A030662,A211213, A181991,
For example the number of ordered set partitions of {1,2,...,9} with sizes in [9], [6,3] and [3,3,3] are 1, 168, 1680 respectively. Thus A(3,3) = -1 + 168 - 1680 = -1513.
Formatted as a triangle:
[1]
[1, -1]
[1, -1, 1]
[1, -1, 1, -5]
[1, -1, 5, -1, 21]
[1, -1, 19, -61, 1, -105]
[1, -1, 69, -1513, 1385, -1, 635]
Cf.
A002115,
A028296,
A030662,
A033999,
A181991,
A211212,
A211213,
A260845,
A260833,
A260875,
A260876.
-
def A260877(m,n):
shapes = ([x*m for x in p] for p in Partitions(n).list())
return sum((-1)^len(s)*factorial(len(s))*SetPartitions(sum(s), s). cardinality() for s in shapes)
for m in (0..5): print([A260877(m,n) for n in (0..7)])
A318148
Coefficients of the Omega polynomials of order 4, triangle T(n,k) read by rows with 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 0, -34, 35, 0, 11056, -16830, 5775, 0, -14873104, 27560780, -15315300, 2627625, 0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625, 0, -495812444583424, 1140896479608800, -948030209181000, 364143337057500, -65706427536750, 4509264634875
Offset: 0
[0] [1]
[1] [0, 1]
[2] [0, -34, 35]
[3] [0, 11056, -16830, 5775]
[4] [0, -14873104, 27560780, -15315300, 2627625]
[5] [0, 56814228736, -119412815760, 84786627900, -24734209500, 2546168625]
All row sums are 1, alternating row sums (taken absolute) are
A211212.
-
# See A318146 for the missing functions.
FL([seq(CL(OmegaPolynomial(4, n)), n=0..8)]);
-
(* OmegaPolynomials are defined in A318146 *)
Table[CoefficientList[OmegaPolynomial[4, n], x], {n, 0, 6}] // Flatten
-
# See A318146 for the function OmegaPolynomial.
[list(OmegaPolynomial(4, n)) for n in (0..6)]
Showing 1-7 of 7 results.
Comments