cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A281480 Central coefficients of the polynomials defined in A278074.

Original entry on oeis.org

1, 1, 16510, 17651304000, 286988816206755000, 35284812773848049161035000, 21735699944364325706210750640600000, 51125456932397825107093888817556205542000000, 378603085421985456745667562645258531056443927230000000, 7641597761030055776217194099395682779700673105680593973250000000
Offset: 0

Views

Author

Peter Luschny, Jan 22 2017

Keywords

Crossrefs

Central coefficients: A088218 (m=0), A210029 (m=1), A281478 (m=2), A281479 (m=3), A281480 (m=4). Related triangles: A097805 (m=0), A131689 (m=1), A241171 (m=2), A278073 (m=3), A278074 (m=4).

Programs

A278073 Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 3.

Original entry on oeis.org

1, 0, 1, 0, 1, 20, 0, 1, 168, 1680, 0, 1, 1364, 55440, 369600, 0, 1, 10920, 1561560, 33633600, 168168000, 0, 1, 87380, 42771456, 2385102720, 34306272000, 137225088000, 0, 1, 699048, 1160164320, 158411809920, 5105916816000, 54752810112000, 182509367040000
Offset: 0

Views

Author

Peter Luschny, Jan 22 2017

Keywords

Examples

			Triangle begins:
[1]
[0, 1]
[0, 1,    20]
[0, 1,   168,    1680]
[0, 1,  1364,   55440,   369600]
[0, 1, 10920, 1561560, 33633600, 168168000]
		

Crossrefs

Cf. A014606 (diagonal), A243664 (row sums), A002115 (alternating row sums), A281479 (central coefficients), A327023 (refinement).
Cf. A097805 (m=0), A131689 (m=1), A241171 (m=2), A278074 (m=4).

Programs

  • Maple
    P := proc(m, n) option remember; if n = 0 then 1 else
    add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n) fi end:
    for n from 0 to 6 do PolynomialTools:-CoefficientList(P(3,n), x) od;
    # Alternatively:
    A278073_row := proc(n)
    1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1));
    expand(series(%,x,3*n+1)); (3*n)!*coeff(%,x,3*n);
    PolynomialTools:-CoefficientList(%,t) end:
    for n from 0 to 6 do A278073_row(n) od;
  • Mathematica
    With[{m = 3}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 21, m}]];
    Function[arg, CoefficientList[arg, t]] /@ % // Flatten
  • Sage
    R = PowerSeriesRing(ZZ, 'x')
    x = R.gen().O(30)
    @cached_function
    def P(m, n):
        if n == 0: return R(1)
        return expand(sum(binomial(m*n, m*k)*P(m, n-k)*x for k in (1..n)))
    def A278073_row(n): return list(P(3, n))
    for n in (0..6): print(A278073_row(n)) # Peter Luschny, Mar 24 2020

Formula

E.g.f.: 1/(1-t*((1/3)*exp(x)+(2/3)*exp(-(1/2)*x)*cos((1/2)*x*sqrt(3))-1)), nonzero terms.

A281478 Central coefficients of Joffe's central differences of zero (assuming offset 0 and T(n,k) extended to 0 <= k <= n in A241171).

Original entry on oeis.org

1, 1, 126, 126720, 494053560, 5283068427000, 126301275727704000, 5896518025761483120000, 488276203972584492344880000, 66735969985432035804226510800000, 14236685931434801591697761172512160000, 4533351707244550464920840944132383960960000, 2077486542875366717627638783543223150778585600000
Offset: 0

Views

Author

Peter Luschny, Jan 22 2017

Keywords

Comments

Also the central coefficients of the polynomials defined in A278073 for m = 2.

Crossrefs

Cf. Central coefficients: A088218 (m=0), A210029 (m=1), A281478 (m=2), A281479 (m=3), A281480 (m=4). Related triangles: A097805 (m=0), A131689 (m=1), A241171 (m=2), A278073 (m=3), A278074 (m=4).

Programs

  • Maple
    # Function P defined in A278073.
    A281479 := n -> coeff(P(2, 2*n), x, n): seq(A281479(n), n=0..9);

A281479 Central coefficients of the polynomials defined in A278073.

Original entry on oeis.org

1, 1, 1364, 42771456, 10298900437056, 11287986820196486400, 41397337338743872194508800, 414528538783792919989135797964800, 9808376038359632185170127842947907993600, 492228239722024416239987973400425228541016064000
Offset: 0

Views

Author

Peter Luschny, Jan 22 2017

Keywords

Crossrefs

Central coefficients: A088218 (m=0), A210029 (m=1), A281478 (m=2), A281479 (m=3), A281480 (m=4). Related triangles: A097805 (m=0), A131689 (m=1), A241171 (m=2), A278073 (m=3), A278074 (m=4).

Programs

A292604 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).

Original entry on oeis.org

1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 20 2017

Keywords

Comments

The generalized Eulerian polynomials F_{m}(x) are defined F_{m; 0}(x) = 1 for all m >= 0 and for n > 0:
F_{0; n}(x) = Sum_{k=0..n} A097805(n, k)*(x-1)^(n-k) with coeffs. in A129186.
F_{1; n}(x) = Sum_{k=0..n} A131689(n, k)*(x-1)^(n-k) with coeffs. in A173018.
F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) with coeffs. in A292604.
F_{3; n}(x) = Sum_{k=0..n} A278073(n, k)*(x-1)^(n-k) with coeffs. in A292605.
F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) with coeffs. in A292606.
The case m = 1 are the Eulerian polynomials whose coefficients are the Eulerian numbers which are displayed in Euler's triangle A173018.
Evaluated at x in {-1, 1, 0} these families of polynomials give for the first few m:
F_{m} : F_{0} F_{1} F_{2} F_{3} F_{4}
x = 1: A000012 A000142 A000680 A014606 A014608 ... (m*n)!/m!^n
x = 0: -- A000012 A000364 A002115 A211212 ... m-alternating permutations of length m*n.
Note that the constant terms of the polynomials are the generalized Euler numbers as defined in A181985. In this sense generalized Euler numbers are also generalized Eulerian numbers.

Examples

			Triangle starts:
[n\k][    0        1        2       3     4  5  6]
--------------------------------------------------
[0][      1]
[1][      1,       0]
[2][      5,       1,       0]
[3][     61,      28,       1,      0]
[4][   1385,    1011,     123,      1,    0]
[5][  50521,   50666,   11706,    506,    1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
		

References

  • G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.

Crossrefs

F_{0} = A129186, F_{1} = A173018, F_{2} is this triangle, F_{3} = A292605, F_{4} = A292606.
First column: A000364. Row sums: A000680. Alternating row sums: A002105.

Programs

  • Maple
    Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
    A292604_row := proc(n) if n = 0 then return [1] fi;
    add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
    for n from 0 to 6 do A292604_row(n) od;
  • Mathematica
    T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
    F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
    row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
    Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
  • Sage
    def A292604_row(n):
        if n == 0: return [1]
        S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
        return expand(S).list() + [0]
    for n in (0..6): print(A292604_row(n))

Formula

F_{2; n}(x) = Sum_{k=0..n} A241171(n, k)*(x-1)^(n-k) for n>0 and F_{2; 0}(x) = 1.

A292606 Triangle read by rows, coefficients of generalized Eulerian polynomials F_{4;n}(x).

Original entry on oeis.org

1, 1, 0, 69, 1, 0, 33661, 988, 1, 0, 60376809, 2669683, 16507, 1, 0, 288294050521, 17033188586, 212734266, 261626, 1, 0, 3019098162602349, 223257353561605, 4297382231090, 17634518610, 4196345, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 26 2017

Keywords

Comments

See the comments in A292604.

Examples

			Triangle starts:
[n\k][          0            1          2       3   4   5]
--------------------------------------------------
[0] [           1]
[1] [           1,           0]
[2] [          69,           1,         0]
[3] [       33661,         988,         1,      0]
[4] [    60376809,     2669683,     16507,      1,  0]
[5] [288294050521, 17033188586, 212734266, 261626,  1,  0]
		

Crossrefs

F_{0} = A129186, F_{1} = A173018, F_{2} = A292604, F_{3} = A292605, F_{4} is this triangle.
First column: A211212. Row sums: A014608. Alternating row sums: A292607.
Cf. A181985.

Programs

  • Maple
    Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
    A292606_row := proc(n) if n = 0 then return [1] fi;
    add(A278074(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
    for n from 0 to 6 do A292606_row(n) od;
  • Sage
    # uses[A278074_row from A278074]
    def A292606_row(n):
        if n == 0: return [1]
        L = A278074_row(n)
        S = sum(L[k]*(x-1)^(n-k) for k in (0..n))
        return expand(S).list() + [0]
    for n in (0..5): print(A292606_row(n))

Formula

F_{4; n}(x) = Sum_{k=0..n} A278074(n, k)*(x-1)^(n-k) for n>0 and F_{4; 0}(x) = 1.

A326477 Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 2 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 4, 3, 0, 46, 60, 15, 0, 1114, 1848, 840, 105, 0, 46246, 88770, 54180, 12600, 945, 0, 2933074, 6235548, 4574130, 1469160, 207900, 10395, 0, 263817646, 605964450, 505915410, 199849650, 39729690, 3783780, 135135
Offset: 0

Views

Author

Peter Luschny, Jul 08 2019

Keywords

Examples

			Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 4, 3]
[3] [0, 46, 60, 15]
[4] [0, 1114, 1848, 840, 105]
[5] [0, 46246, 88770, 54180, 12600, 945]
[6] [0, 2933074, 6235548, 4574130, 1469160, 207900, 10395]
		

Crossrefs

Row sums A094088. Alternating row sums A153881 starting at 0.
Main diagonal A001147. Associated set partitions A241171.
A129062 (m=1, associated with A131689), this sequence (m=2), A326587 (m=3, associated with A278073), A326585 (m=4, associated with A278074).

Programs

  • Maple
    CL := f -> PolynomialTools:-CoefficientList(f, x):
    FL := s -> ListTools:-Flatten(s, 1):
    StirPochConv := proc(m, n) local P, L; P := proc(m, n) option remember;
    `if`(n = 0, 1, add(binomial(m*n, m*k)*P(m, n-k)*x, k=1..n)) end:
    L := CL(P(m, n)); CL(expand(add(L[k+1]*pochhammer(x,k)/k!, k=0..n))) end:
    FL([seq(StirPochConv(2,n), n = 0..7)]);
  • Mathematica
    P[, 0] = 1; P[m, n_] := P[m, n] = Sum[Binomial[m*n, m*k]*P[m, n-k]*x, {k, 1, n}] // Expand;
    T[m_][n_] := CoefficientList[P[m, n], x].Table[Pochhammer[x, k]/k!, {k, 0, n}] // CoefficientList[#, x]&;
    Table[T[2][n], {n, 0, 7}] // Flatten (* Jean-François Alcover, Jul 21 2019 *)
  • Sage
    def StirPochConv(m, n):
        z = var('z'); R = ZZ[x]
        F = [i/m for i in (1..m-1)]
        H = hypergeometric([], F, (z/m)^m)
        P = R(factorial(m*n)*taylor(exp(x*(H-1)), z, 0, m*n + 1).coefficient(z, m*n))
        L = P.list()
        S = sum(L[k]*rising_factorial(x,k) for k in (0..n))
        return expand(S).list()
    for n in (0..6): print(StirPochConv(2, n))

Formula

For m >= 1 let P(m,0) = 1 and P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)*P(m, n-k)*x for n > 0. Then T_{m}(n, k) = Sum_{k=0..n} ([x^k]P(m, n))*rf(x,k)/k! where rf(x,k) are the rising factorial powers. T(n, k) = T_{2}(n, k).

A326585 Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 4 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 36, 35, 0, 12046, 17820, 5775, 0, 16674906, 30263480, 16216200, 2627625, 0, 65544211366, 135417565890, 93516348900, 26189163000, 2546168625, 0, 588586227465426, 1334168329550300, 1083314031995250, 402794176785000, 69571511509500, 4509264634875
Offset: 0

Views

Author

Peter Luschny, Jul 21 2019

Keywords

Examples

			Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 36, 35]
[3] [0, 12046, 17820, 5775]
[4] [0, 16674906, 30263480, 16216200, 2627625]
[5] [0, 65544211366, 135417565890, 93516348900, 26189163000, 2546168625]
[6] [0, 588586227465426, 1334168329550300, 1083314031995250, 402794176785000, 69571511509500, 4509264634875]
		

Crossrefs

Row sums A243665. Main diagonal A025036.
A129062 (m=1, associated with A131689), A326477 (m=2, associated with A241171), A326587 (m=3, associated with A278073), this sequence (m=4, associated with A278074).

Programs

Formula

T(n, k) = T_{4}(n, k) where T_{m}(n, k) is defined in A326477.

A326587 Coefficients of polynomials related to ordered set partitions. Triangle read by rows, T_{m}(n, k) for m = 3 and 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 11, 10, 0, 645, 924, 280, 0, 111563, 197802, 101640, 15400, 0, 42567981, 86271640, 57717660, 15415400, 1401400, 0, 30342678923, 67630651098, 53492240256, 19158419280, 3144741600, 190590400
Offset: 0

Views

Author

Peter Luschny, Jul 20 2019

Keywords

Examples

			Triangle starts:
0 [1]
1 [0, 1]
2 [0, 11, 10]
3 [0, 645, 924, 280]
4 [0, 111563, 197802, 101640, 15400]
5 [0, 42567981, 86271640, 57717660, 15415400, 1401400]
6 [0, 30342678923, 67630651098, 53492240256, 19158419280, 3144741600, 190590400]
		

Crossrefs

Row sums A243664. Main diagonal A025035.
A129062 (m=1, associated with A131689), A326477 (m=2, associated with A241171), this sequence (m=3, associated with A278073), A326585 (m=4, associated with A278074).

Programs

Formula

T(n, k) = T_{3}(n, k) where T_{m}(n, k) is defined in A326477.

A327024 Ordered set partitions of the set {1, 2, ..., 4*n} with all block sizes divisible by 4, irregular triangle T(n, k) for n >= 0 and 0 <= k < A000041(n), read by rows.

Original entry on oeis.org

1, 1, 1, 70, 1, 990, 34650, 1, 3640, 12870, 2702700, 63063000, 1, 9690, 251940, 26453700, 187065450, 17459442000, 305540235000, 1, 21252, 1470942, 2704156, 154448910, 8031343320, 9465511770, 374796021600, 3975514943400, 231905038365000, 3246670537110000
Offset: 0

Views

Author

Peter Luschny, Aug 27 2019

Keywords

Comments

T_{m}(n, k) gives the number of ordered set partitions of the set {1, 2, ..., m*n} into sized blocks of shape m*P(n, k), where P(n, k) is the k-th integer partition of n in the 'canonical' order A080577. Here we assume the rows of A080577 to be 0-based and m*[a, b, c,..., h] = [m*a, m*b, m*c,..., m*h]. Here is case m = 4. For instance 4*P(4, .) = [[16], [12, 4], [8, 8], [8, 4, 4], [4, 4, 4, 4]].

Examples

			Triangle starts (note the subdivisions by ';' (A072233)):
[0] [1]
[1] [1]
[2] [1;    70]
[3] [1;   990;   34650]
[4] [1;  3640,   12870;  2702700;  63063000]
[5] [1;  9690,  251940; 26453700, 187065450; 17459442000; 305540235000]
[6] [1; 21252, 1470942,  2704156; 154448910,  8031343320,   9465511770;
     374796021600, 3975514943400; 231905038365000; 3246670537110000]
.
T(4, 1) = 3640 because [12, 4] is the integer partition 4*P(4, 1) in the canonical order and there are 1820 set partitions which have the shape [12, 4]. Finally, since the order of the sets is taken into account, one gets 2!*1820 = 3640.
		

Crossrefs

Row sums: A243665, alternating row sums: A211212, main diagonal: A014608, central column: A281480, by length: A278074.
Cf. A178803 (m=0), A133314 (m=1), A327022 (m=2), A327023 (m=3), this sequence (m=4).

Programs

  • Sage
    # uses[GenOrdSetPart from A327022]
    def A327024row(n): return GenOrdSetPart(4, n)
    for n in (0..6): print(A327024row(n))
Showing 1-10 of 11 results. Next