1, 0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 3, 1, 0, 1, 4, 6, 4, 1, 0, 1, 5, 10, 10, 5, 1, 0, 1, 6, 15, 20, 15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 1, 10, 45, 120, 210, 252, 210, 120, 45, 10, 1, 0, 1, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 1
Offset: 0
A131689
Triangle of numbers T(n,k) = k!*Stirling2(n,k) = A000142(k)*A048993(n,k) read by rows, T(n, k) for 0 <= k <= n.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 6, 6, 0, 1, 14, 36, 24, 0, 1, 30, 150, 240, 120, 0, 1, 62, 540, 1560, 1800, 720, 0, 1, 126, 1806, 8400, 16800, 15120, 5040, 0, 1, 254, 5796, 40824, 126000, 191520, 141120, 40320, 0, 1, 510, 18150, 186480, 834120, 1905120, 2328480, 1451520, 362880
Offset: 0
The triangle T(n,k) begins:
n\k 0 1 2 3 4 5 6 7 8 9 10 ...
0: 1
1: 0 1
2: 0 1 2
3: 0 1 6 6
4: 0 1 14 36 24
5: 0 1 30 150 240 120
6: 0 1 62 540 1560 1800 720
7: 0 1 126 1806 8400 16800 15120 5040
8: 0 1 254 5796 40824 126000 191520 141120 40320
9: 0 1 510 18150 186480 834120 1905120 2328480 1451520 362880
10: 0 1 1022 55980 818520 5103000 16435440 29635200 30240000 16329600 3628800
... reformatted and extended. - _Wolfdieter Lang_, Mar 31 2017
From _Peter Bala_, Feb 04 2018: (Start)
T(4,2) = 14 alignments of length 2 of 4 strings of length 1. Examples include
(i) A - (ii) A - (iii) A -
B - B - - B
C - - C - C
- D - D - D
There are C(4,1) = 4 alignments of type (i) with a single gap character - in column 1, C(4,2) = 6 alignments of type (ii) with two gap characters in column 1 and C(4,3) = 4 alignments of type (iii) with three gap characters in column 1, giving a total of 4 + 6 + 4 = 14 alignments. (End)
- Vincenzo Librandi, Rows n = 0..100, flattened
- Peter Bala, Deformations of the Hadamard product of power series
- F. Brenti and V. Welker, f-vectors of barycentric subdivisions, arXiv:math/0606356 [math.CO], Math. Z., 259(4), 849-865, 2008.
- M. Dukes and C. D. White, Web Matrices: Structural Properties and Generating Combinatorial Identities, arXiv:1603.01589 [math.CO], 2016.
- Germain Kreweras, Une dualité élémentaire souvent utile dans les problèmes combinatoires, Mathématiques et Sciences Humaines 3 (1963): 31-41.
- Jerry Metzger and Thomas Richards, A Prisoner Problem Variation, Journal of Integer Sequences, Vol. 18 (2015), Article 15.2.7.
- Massimo Nocentini, An algebraic and combinatorial study of some infinite sequences of numbers supported by symbolic and logic computation, PhD Thesis, University of Florence, 2019. See Ex. 36.
- Mircea Dan Rus, Yet another note on notation, arXiv:2501.08762 [math.HO], 2025. See p. 6.
- J. B. Slowinski, The Number of Multiple Alignments, Molecular Phylogenetics and Evolution 10:2 (1998), 264-266. doi:10.1006/mpev.1998.0522
- M. Z. Spivey, On Solutions to a General Combinatorial Recurrence, J. Int. Seq. 14 (2011) # 11.9.7.
- Wikipedia, Barycentric subdivision
- Wikipedia, Simplicial complex
- Wikipedia, Simplex
- Gus Wiseman, Sequences counting and ranking compositions by the patterns they match or avoid.
Columns k=0..10 are
A000007,
A000012,
A000918,
A001117,
A000919,
A001118,
A000920,
A135456,
A133068,
A133360,
A133132,
Case m=1 of the polynomials defined in
A278073.
Classes of patterns:
-
A032011 = distinct multiplicities
-
function T(n, k)
if k < 0 || k > n return 0 end
if n == 0 && k == 0 return 1 end
k*(T(n-1, k-1) + T(n-1, k))
end
for n in 0:7
println([T(n, k) for k in 0:n])
end
# Peter Luschny, Mar 26 2020
-
A131689 := (n,k) -> Stirling2(n,k)*k!: # Peter Luschny, Sep 17 2011
# Alternatively:
A131689_row := proc(n) 1/(1-t*(exp(x)-1)); expand(series(%,x,n+1)); n!*coeff(%,x,n); PolynomialTools:-CoefficientList(%,t) end:
for n from 0 to 9 do A131689_row(n) od; # Peter Luschny, Jan 23 2017
-
t[n_, k_] := k!*StirlingS2[n, k]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 25 2014 *)
T[n_, k_] := If[n <= 0 || k <= 0, Boole[n == 0 && k == 0], Sum[(-1)^(i + k) Binomial[k, i] i^(n + k), {i, 0, k}]]; (* Michael Somos, Jul 08 2018 *)
-
{T(n, k) = if( n<0, 0, sum(i=0, k, (-1)^(k + i) * binomial(k, i) * i^n))};
/* Michael Somos, Jul 08 2018 */
-
@cached_function
def F(n): # Fubini polynomial
R. = PolynomialRing(ZZ)
if n == 0: return R(1)
return R(sum(binomial(n, k)*F(n - k)*x for k in (1..n)))
for n in (0..9): print(F(n).list()) # Peter Luschny, May 21 2021
A241171
Triangle read by rows: Joffe's central differences of zero, T(n,k), 1 <= k <= n.
Original entry on oeis.org
1, 1, 6, 1, 30, 90, 1, 126, 1260, 2520, 1, 510, 13230, 75600, 113400, 1, 2046, 126720, 1580040, 6237000, 7484400, 1, 8190, 1171170, 28828800, 227026800, 681080400, 681080400, 1, 32766, 10663380, 494053560, 6972966000, 39502663200, 95351256000, 81729648000, 1, 131070, 96461910, 8203431600, 196556560200, 1882311631200, 8266953895200, 16672848192000, 12504636144000
Offset: 1
Triangle begins:
1,
1, 6,
1, 30, 90,
1, 126, 1260, 2520,
1, 510, 13230, 75600, 113400,
1, 2046, 126720, 1580040, 6237000, 7484400,
1, 8190, 1171170, 28828800, 227026800, 681080400, 681080400,
1, 32766, 10663380, 494053560, 6972966000, 39502663200, 95351256000, 81729648000,
...
From _Peter Bala_, Aug 20 2014: (Start)
Row 2: [1,6]
k Ordered set partitions of {1,2,3,4} into k blocks Number
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
1 {1,2,3,4} 1
2 {1,2}{3,4}, {3,4}{1,2}, {1,3}{2,4}, {2,4}{1,3}, 6
{1,4}{2,3}, {2,3}{1,4}
(End)
- H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 283.
- S. A. Joffe, Calculation of the first thirty-two Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 47 (1914), 103-126.
- S. A. Joffe, Calculation of eighteen more, fifty in all, Eulerian numbers from central differences of zero, Quart. J. Pure Appl. Math. 48 (1917-1920), 193-271.
Case m=2 of the polynomials defined in
A278073.
-
Flat(List([1..10],n->List([1..n],k->1/(2^(k-1))*Sum([1..k],j->(-1)^(k-j)*Binomial(2*k,k-j)*j^(2*n))))); # Muniru A Asiru, Feb 27 2019
-
T := proc(n,k) option remember;
if k > n then 0
elif k=0 then k^n
elif k=1 then 1
else k*(2*k-1)*T(n-1,k-1)+k^2*T(n-1,k); fi;
end: # Minor edit to make it also work in the (0,0)-offset case. Peter Luschny, Sep 03 2022
for n from 1 to 12 do lprint([seq(T(n,k), k=1..n)]); od:
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k(2k-1) T[n-1, k-1] + k^2 T[n-1, k]; T[, 1] = 1; T[, ] = 0; Table[T[n, k], {n, 1, 9}, {k, 1, n}] (* _Jean-François Alcover, Jul 03 2019 *)
-
@cached_function
def A241171(n, k):
if n == 0 and k == 0: return 1
if k < 0 or k > n: return 0
return (2*k^2 - k)*A241171(n - 1, k - 1) + k^2*A241171(n - 1, k)
for n in (1..6): print([A241171(n, k) for k in (1..n)]) # Peter Luschny, Sep 06 2017
A002115
Generalized Euler numbers.
Original entry on oeis.org
1, 1, 19, 1513, 315523, 136085041, 105261234643, 132705221399353, 254604707462013571, 705927677520644167681, 2716778010767155313771539, 14050650308943101316593590153, 95096065132610734223282520762883, 823813936407337360148622860507620561
Offset: 0
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Alois P. Heinz, Table of n, a(n) for n = 0..166
- Takao Komatsu and Ram Krishna Pandey, On hypergeometric Cauchy numbers of higher grade, AIMS Mathematics (2021) Vol. 6, Issue 7, 6630-6646.
- Takao Komatsu and Guo-Dong Liu, Congruence properties of Lehmer-Euler numbers, arXiv:2501.01178 [math.NT], 2025.
- D. H. Lehmer, Lacunary recurrence formulas for the numbers of Bernoulli and Euler, Annals Math., 36 (1935), 637-649.
- Bruce E. Sagan, Generalized Euler numbers and ordered set partitions, arXiv:2501.07692 [math.NT], 2025. See p. 3.
-
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, `if`(t=0,
add(b(u-j, o+j-1, irem(t+1, 3)), j=1..u),
add(b(u+j-1, o-j, irem(t+1, 3)), j=1..o)))
end:
a:= n-> b(3*n, 0$2):
seq(a(n), n=0..17); # Alois P. Heinz, Aug 12 2019
# Alternative:
h := 1 / hypergeom([], [1/3, 2/3], (-x/3)^3): ser := series(h, x, 40):
seq((3*n)! * coeff(ser, x, 3*n), n = 0..13); # Peter Luschny, Mar 13 2023
-
max = 12; f[x_] := 1/(1/3*Exp[-x^(1/3)] + 2/3*Exp[1/2*x^(1/3)]*Cos[1/2*3^(1/2)* x^(1/3)]); CoefficientList[Series[f[x], {x, 0, max}], x]*(3 Range[0, max])! (* Jean-François Alcover, Sep 16 2013, after Vladeta Jovovic *)
A278074
Triangle read by rows, coefficients of the polynomials P(m, n) = Sum_{k=1..n} binomial(m*n, m*k)* P(m, n-k)*z with P(m, 0) = 1 and m = 4.
Original entry on oeis.org
1, 0, 1, 0, 1, 70, 0, 1, 990, 34650, 0, 1, 16510, 2702700, 63063000, 0, 1, 261630, 213519150, 17459442000, 305540235000, 0, 1, 4196350, 17651304000, 4350310965000, 231905038365000, 3246670537110000
Offset: 0
Triangle starts:
[1]
[0, 1]
[0, 1, 70]
[0, 1, 990, 34650]
[0, 1, 16510, 2702700, 63063000]
[0, 1, 261630, 213519150, 17459442000, 305540235000]
-
P := proc(m,n) option remember; if n = 0 then 1 else
add(binomial(m*n,m*k)* P(m,n-k)*x, k=1..n) fi end:
for n from 0 to 6 do PolynomialTools:-CoefficientList(P(4,n), x) od;
# Alternatively:
A278074_row := proc(n) 1/(1-t*((cosh(x)+cos(x))/2-1)); expand(series(%,x,4*n+1));
(4*n)!*coeff(%,x,4*n); PolynomialTools:-CoefficientList(%,t) end:
for n from 0 to 5 do A278074_row(n) od;
-
With[{m = 4}, Table[Expand[j!*SeriesCoefficient[1/(1 - t*(MittagLefflerE[m, x^m] - 1)), {x, 0, j}]], {j, 0, 24, m}]];
Function[arg, CoefficientList[arg, t]] /@ % // Flatten
-
# uses [P from A278073]
def A278074_row(n): return list(P(4, n))
for n in (0..6): print(A278074_row(n)) # Peter Luschny, Mar 24 2020
A281478
Central coefficients of Joffe's central differences of zero (assuming offset 0 and T(n,k) extended to 0 <= k <= n in A241171).
Original entry on oeis.org
1, 1, 126, 126720, 494053560, 5283068427000, 126301275727704000, 5896518025761483120000, 488276203972584492344880000, 66735969985432035804226510800000, 14236685931434801591697761172512160000, 4533351707244550464920840944132383960960000, 2077486542875366717627638783543223150778585600000
Offset: 0
A281480
Central coefficients of the polynomials defined in A278074.
Original entry on oeis.org
1, 1, 16510, 17651304000, 286988816206755000, 35284812773848049161035000, 21735699944364325706210750640600000, 51125456932397825107093888817556205542000000, 378603085421985456745667562645258531056443927230000000, 7641597761030055776217194099395682779700673105680593973250000000
Offset: 0
A292604
Triangle read by rows, coefficients of generalized Eulerian polynomials F_{2}(x).
Original entry on oeis.org
1, 1, 0, 5, 1, 0, 61, 28, 1, 0, 1385, 1011, 123, 1, 0, 50521, 50666, 11706, 506, 1, 0, 2702765, 3448901, 1212146, 118546, 2041, 1, 0, 199360981, 308869464, 147485535, 24226000, 1130235, 8184, 1, 0
Offset: 0
Triangle starts:
[n\k][ 0 1 2 3 4 5 6]
--------------------------------------------------
[0][ 1]
[1][ 1, 0]
[2][ 5, 1, 0]
[3][ 61, 28, 1, 0]
[4][ 1385, 1011, 123, 1, 0]
[5][ 50521, 50666, 11706, 506, 1, 0]
[6][2702765, 3448901, 1212146, 118546, 2041, 1, 0]
- G. Frobenius. Über die Bernoullischen Zahlen und die Eulerschen Polynome. Sitzungsber. Preuss. Akad. Wiss. Berlin, pages 200-208, 1910.
-
Coeffs := f -> PolynomialTools:-CoefficientList(expand(f), x):
A292604_row := proc(n) if n = 0 then return [1] fi;
add(A241171(n, k)*(x-1)^(n-k), k=0..n); [op(Coeffs(%)), 0] end:
for n from 0 to 6 do A292604_row(n) od;
-
T[n_, k_] /; 1 <= k <= n := T[n, k] = k (2 k - 1) T[n - 1, k - 1] + k^2 T[n - 1, k]; T[, 1] = 1; T[, _] = 0;
F[2, 0][] = 1; F[2, n][x_] := Sum[T[n, k] (x - 1)^(n - k), {k, 0, n}];
row[n_] := If[n == 0, {1}, Append[CoefficientList[ F[2, n][x], x], 0]];
Table[row[n], {n, 0, 7}] (* Jean-François Alcover, Jul 06 2019 *)
-
def A292604_row(n):
if n == 0: return [1]
S = sum(A241171(n, k)*(x-1)^(n-k) for k in (0..n))
return expand(S).list() + [0]
for n in (0..6): print(A292604_row(n))
A362586
Triangle read by rows, T(n, k) = A094088(n) * binomial(n, k).
Original entry on oeis.org
1, 1, 1, 7, 14, 7, 121, 363, 363, 121, 3907, 15628, 23442, 15628, 3907, 202741, 1013705, 2027410, 2027410, 1013705, 202741, 15430207, 92581242, 231453105, 308604140, 231453105, 92581242, 15430207, 1619195761, 11334370327, 34003110981, 56671851635, 56671851635, 34003110981, 11334370327, 1619195761
Offset: 0
[0] 1;
[1] 1, 1;
[2] 7, 14, 7;
[3] 121, 363, 363, 121;
[4] 3907, 15628, 23442, 15628, 3907;
[5] 202741, 1013705, 2027410, 2027410, 1013705, 202741;
Comments
Examples
References
Links
Crossrefs
Programs
Maple
Mathematica
PARI
PARI
PARI
Python
Sage
Formula
Extensions