A182001 Riordan array ((2*x+1)/(1-x-x^2), x/(1-x-x^2)).
1, 3, 1, 4, 4, 1, 7, 9, 5, 1, 11, 20, 15, 6, 1, 18, 40, 40, 22, 7, 1, 29, 78, 95, 68, 30, 8, 1, 47, 147, 213, 185, 105, 39, 9, 1, 76, 272, 455, 466, 320, 152, 49, 10, 1, 123, 495, 940, 1106, 891, 511, 210, 60, 11, 1, 199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1
Offset: 0
Examples
Triangle begins : 1; 3, 1; 4, 4, 1; 7, 9, 5, 1; 11, 20, 15, 6, 1; 18, 40, 40, 22, 7, 1; 29, 78, 95, 68, 30, 8, 1; 47, 147, 213, 185, 105, 39, 9, 1; 76, 272, 455, 466, 320, 152, 49, 10, 1; 123, 495, 940, 1106, 891, 511, 210, 60, 11, 1; 199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1; (0, 3, -5/3, -1/3, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, ...) begins: 1; 0, 1; 0, 3, 1; 0, 4, 4, 1; 0, 7, 9, 5, 1; 0, 11, 20, 15, 6, 1; 0, 18, 40, 40, 22, 7, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
function T(n,k) if k lt 0 or k gt n then return 0; elif k eq n then return 1; elif k eq 0 then return Lucas(n+1); else return T(n-1,k) + T(n-1,k-1) + T(n-2,k); end if; return T; end function; [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
-
Maple
with(combinat); T:= proc(n, k) option remember; if k<0 or k>n then 0 elif k=n then 1 elif k=0 then fibonacci(n+2) + fibonacci(n) else T(n-1,k) + T(n-1,k-1) + T(n-2,k) fi; end: seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
-
Mathematica
With[{m = 10}, CoefficientList[CoefficientList[Series[(1+2*x)/(1-x-y*x-x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *) T[n_, k_]:= T[n, k]= If[k<0||k>n, 0, If[k==n, 1, If[k==0, LucasL[n+1], T[n-1, k] + T[n-1, k-1] + T[n-2, k] ]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)
Formula
Extensions
a(29) corrected by and a(55)-a(65) from Georg Fischer, Feb 18 2020
Comments