cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182001 Riordan array ((2*x+1)/(1-x-x^2), x/(1-x-x^2)).

Original entry on oeis.org

1, 3, 1, 4, 4, 1, 7, 9, 5, 1, 11, 20, 15, 6, 1, 18, 40, 40, 22, 7, 1, 29, 78, 95, 68, 30, 8, 1, 47, 147, 213, 185, 105, 39, 9, 1, 76, 272, 455, 466, 320, 152, 49, 10, 1, 123, 495, 940, 1106, 891, 511, 210, 60, 11, 1, 199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1
Offset: 0

Views

Author

Philippe Deléham, Apr 05 2012

Keywords

Comments

Subtriangle of the triangle given by (0, 3, -5/3, -1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Antidiagonal sums are A001045(n+2).

Examples

			Triangle begins :
    1;
    3,   1;
    4,   4,    1;
    7,   9,    5,    1;
   11,  20,   15,    6,    1;
   18,  40,   40,   22,    7,    1;
   29,  78,   95,   68,   30,    8,   1;
   47, 147,  213,  185,  105,   39,   9,   1;
   76, 272,  455,  466,  320,  152,  49,  10, 1;
  123, 495,  940, 1106,  891,  511, 210,  60, 11,  1;
  199, 890, 1890, 2512, 2317, 1554, 770, 280, 72, 12, 1;
(0, 3, -5/3, -1/3, 0, 0, ...) DELTA (1, 0, -2/3, 2/3, 0, 0, ...) begins:
  1;
  0,  1;
  0,  3,  1;
  0,  4,  4,  1;
  0,  7,  9,  5,  1;
  0, 11, 20, 15,  6, 1;
  0, 18, 40, 40, 22, 7, 1;
		

Crossrefs

Cf. Columns : A000032, A023607, A152881

Programs

  • Magma
    function T(n,k)
      if k lt 0 or k gt n then return 0;
      elif k eq n then return 1;
      elif k eq 0 then return Lucas(n+1);
      else return T(n-1,k) + T(n-1,k-1) + T(n-2,k);
      end if; return T; end function;
    [T(n,k): k in [0..n], n in [0..10]]; // G. C. Greubel, Feb 18 2020
  • Maple
    with(combinat);
    T:= proc(n, k) option remember;
          if k<0 or k>n then 0
        elif k=n then 1
        elif k=0 then fibonacci(n+2) + fibonacci(n)
        else T(n-1,k) + T(n-1,k-1) + T(n-2,k)
          fi; end:
    seq(seq(T(n, k), k=0..n), n=0..10); # G. C. Greubel, Feb 18 2020
  • Mathematica
    With[{m = 10}, CoefficientList[CoefficientList[Series[(1+2*x)/(1-x-y*x-x^2), {x, 0, m}, {y, 0, m}], x], y]] // Flatten (* Georg Fischer, Feb 18 2020 *)
    T[n_, k_]:= T[n, k]= If[k<0||k>n, 0, If[k==n, 1, If[k==0, LucasL[n+1], T[n-1, k] + T[n-1, k-1] + T[n-2, k] ]]]; Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 18 2020 *)

Formula

G.f.: (1+2*x)/(1-x-y*x-x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k), T(0,0) = T(1,1) = 1, T(1,0) = 3, T(n,k) = 0 if k<0 or if k>n.
Sum_{k=0..nn} T(n,k)*x^k = A000034(n), A000032(n+1), A048654(n), A108300(n), A048875(n) for x = -1, 0, 1, 2, 3 respectively.

Extensions

a(29) corrected by and a(55)-a(65) from Georg Fischer, Feb 18 2020