A182015 Diagonal sums of triangle A182013.
1, 2, 5, 11, 26, 60, 145, 353, 884, 2241, 5786, 15108, 39941, 106558, 286809, 777505, 2121668, 5822287, 16059288, 44494738, 123782207, 345615047, 968211110, 2720561790, 7665640267, 21654105734, 61312389677, 173978404587, 494667697706, 1409099662020
Offset: 0
Keywords
Crossrefs
Cf. A182013.
Programs
-
Mathematica
M[n_]:=If[n==0,1,Coefficient[(1+x+x^2)^(n+1),x^n]/(n+1)]; Table[Sum[(n-i+1)M[i],{i,0,n}]-Sum[(n-2i)M[i],{i,0,Floor[n/2]}],{n,0,30}]
-
Maxima
M(n):=coeff(expand((1+x+x^2)^(n+1)),x^n)/(n+1); makelist(sum((n-i+1)*M(i),i,0,n)-sum((n-2*i)*M(i),i,0,floor(n/2)),n,0,30);
Formula
a(n) = sum(sum(M(i),i=k..n-k),k=0..n), where the M(n)'s are the Motzkin numbers.
a(n) = sum((n-i+1)*M(i),i=0..n) - sum((n-2*i)*M(i),i=0..floor(n/2)).
G.f.: (1-x+x*sqrt(1-2*x-3*x^2)-sqrt(1-2*x^2-3*x^4))/(2*x^3*(1-x)^2).