A182028 Take first n bits of the infinite Fibonacci word A003849, regard them as a binary number, then convert it to base 10.
0, 1, 2, 4, 9, 18, 37, 74, 148, 297, 594, 1188, 2377, 4754, 9509, 19018, 38036, 76073, 152146, 304293, 608586, 1217172, 2434345, 4868690, 9737380, 19474761, 38949522, 77899045, 155798090, 311596180, 623192361, 1246384722, 2492769444, 4985538889, 9971077778
Offset: 0
Examples
0 -> 0 -> a(0) = 0, 0,1 -> 01 -> a(1) = 1, 0,1,0 -> 010 -> a(2) = 2, 0,1,0,0 -> 0100 -> a(3) = 4, 0,1,0,0,1 -> 01001 -> a(4) = 9, 0,1,0,0,1,0 -> 010010 -> a(5) = 18, 0,1,0,0,1,0,1 -> 0100101 -> a(6) = 37 0,1,0,0,1,0,1,0 -> 01001010 -> a(7) = 74 0,1,0,0,1,0,1,0,0 -> 010010100 -> a(8) = 148, 0,1,0,0,1,0,1,0,0,1 -> 0100101001 -> a(9) = 297.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Programs
-
Haskell
a182028 n = a182028_list !! n a182028_list = scanl1 (\v b -> 2 * v + b) a003849_list
-
Mathematica
nesting = 7; A003849 = Flatten[Nest[{#, #[[1]]}&, {0, 1}, nesting]]; a[n_] := FromDigits[Take[A003849, n+1], 2]; Table[a[n], {n, 0, Length[A003849] - 1}] (* Jean-François Alcover, Feb 13 2016 *)
Formula
a(n) = 2*a(n-1) + A003849(n) for n > 0, a(0) = 0.
Comments