A182049 Numbers m such that m! is not pandigital in decimal representation.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26, 28, 29, 30, 32, 38, 41
Offset: 1
Examples
20! = 2432902008176640000 -> 0000000122234466789 with missing 5, therefore A137580(20) = 9, a(21)=20; 21! = 51090942171709440000 -> 00000001112444577999 with missing {3,6,8}, therefore A137580(21) = 7, a(22)=21; 22! = 1124000727777607680000 -> 0000000011224667777778 with missing {5,7,9}, therefore A137580(22) = 7, a(23)=22; 23! = 25852016738884976640000 -> 00000122344556667788889 pandigital, A137580(23) = 10, 23 is not a term; 24! = 620448401733239439360000 -> 000000122333334444667899 with missing 5, therefore A137580(24) = 9, a(24)=24; 25! = 15511210043330985984000000 -> 00000000011112333445558899 with missing {6,7}, therefore A137580(24) = 8, a(25)=25.
Links
- Eric Weisstein's World of Mathematics, Pandigital Number
- Wikipedia, Pandigital number
- Index entries for sequences related to factorial numbers.
Crossrefs
Cf. A137580.
Programs
-
Haskell
a182049 n = a182049_list !! (n-1) a182049_list = filter ((< 10) . a137580) [0..]
-
PARI
for(n=0,999,#Set(digits(n!))<10&&print1(n","))
Comments