A182062 T(n,k) = C(n+1-k,k)*k!*(n-k)!, the number of ways for k men and n-k women to form a queue in which no man is next to another man.
1, 1, 1, 2, 2, 0, 6, 6, 2, 0, 24, 24, 12, 0, 0, 120, 120, 72, 12, 0, 0, 720, 720, 480, 144, 0, 0, 0, 5040, 5040, 3600, 1440, 144, 0, 0, 0, 40320, 40320, 30240, 14400, 2880, 0, 0, 0, 0, 362880, 362880, 282240, 151200, 43200, 2880, 0, 0, 0, 0, 3628800, 3628800
Offset: 0
Examples
T(4,2)=12 since there are 12 ways to line up two men {M,m} and two women {W,w} so that no man is next to another man, namely, MWmw, MWwm, MwmW, MwWm, mWMw, mWwM, mwMW, mwWM, WMwm, WmwM, wMWm, and wmWM. Triangle T(n,k) begins 1, 1, 1, 2, 2, 0, 6, 6, 2, 0, 24, 24, 12, 0, 0, 120, 120, 72, 12, 0, 0, 720, 720, 480, 144, 0, 0, 0, 5040, 5040, 3600, 1440, 144, 0, 0, 0, 40320, 40320, 30240, 14400, 2880, 0, 0, 0, 0, 362880,362880,282240,151200,43200,2880,0,0,0,0, 3628800,3628800,2903040,1693440,604800,86400,0,0,0,0,0
Links
- T. D. Noe, Rows n = 0..100, flattened
- Dennis Walsh, Notes on isolating men in a line-up [dead link]
Programs
-
Maple
seq(seq(binomial(n+1-k,k)*k!*(n-k)!,k=0..n),n=0..10);
-
Mathematica
Flatten[Table[Binomial[n+1-k,k]k!(n-k)!,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 15 2012 *)
Formula
binomial(n+1-k,k)*k!*(n-k)!
G.f. (fixed k): (1-k)*hypergeom([1, 1-k, 2-k],[2-2*k],t)*GAMMA(1-k)^2/GAMMA(2-2*k)
T(n,k)=(n+2-2k)*T(n-1,k-1)
Comments