A182078 Odd numbers n such that the reduced Collatz map n -> (3n+1)/2^k gives a trajectory of decreasing odd numbers.
5, 13, 17, 21, 45, 53, 69, 85, 113, 141, 181, 213, 241, 277, 301, 321, 341, 369, 401, 453, 565, 725, 753, 853, 909, 965, 1069, 1109, 1137, 1205, 1285, 1365, 1425, 1477, 1605, 1713, 1813, 1933, 1969, 2261, 2417, 2573, 2577, 2625, 2901, 2957, 3013, 3213, 3413
Offset: 1
Keywords
Examples
45 is in the sequence because 45 generates the trajectory of odd numbers : 45 -> 17 -> -> 13 -> 5 -> 1.
Programs
-
Maple
for n from 3 by 2 to 5000 do:i:=0:x:=n:n0:=n: u0:=0:for it from 1 to 1000 while(n0<>1 and u0=0) do: for a from 1 to 100 while(x mod 2 = 0 ) do: i:=i+1:x:=x/2: od:if x > n0 then u0:=1:else i:=i+1:n0:=x :x:=3*n0+1: fi:od: if u0=0 then printf(`%d, `,n):else fi:od: