A182100 The number of connected simple labeled graphs with <= n nodes.
1, 2, 4, 11, 65, 974, 31744, 2069971, 267270041, 68629753650, 35171000942708, 36024807353574291, 73784587576805254665, 302228602363365451957806, 2475873310144021668263093216, 40564787336902311168400640561099
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Sep 03 2019: (Start) The a(0) = 1 through a(3) = 11 edge-sets (singletons represent uncovered vertices): {} {} {} {} {{1}} {{1}} {{1}} {{2}} {{2}} {{1,2}} {{3}} {{1,2}} {{1,3}} {{2,3}} {{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}} {{1,2},{1,3},{2,3}} (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 0..80
Crossrefs
Programs
-
Mathematica
nn = 15; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[Exp[x] (Log[g] + 1), {x, 0, nn}], x]
Formula
a(n) = Sum_{i=0..n} binomial(n,i)*A001187(i).
E.g.f.: exp(x)*A(x) where A(x) is e.g.f. for A001187.
a(n) = A327078(n) + n. - Gus Wiseman, Sep 03 2019