A182102 Table of triangular arguments such that if A002262(14*k) = "r" then the product A182431(k,i + 1) * A182431(k,i + 2) equals "r" + A000217(a(k,i)).
0, -1, 4, 48, -1, 7, 343, 16, 0, 8, 2064, 123, -1, 3, 10, 12095, 748, 0, 12, 5, 11, 70560, 4391, 7, 71, 10, 8, 12, 411319, 25624, 48, 416, 45, 23, 11, 13, 2397408, 149379, 287, 2427, 250, 116, 36, 14, 14, 13973183, 870676
Offset: 0
Examples
The table begins as follows: 0 -1 48 343 2064 12095 70560 ... 4 -1 16 123 748 4391 25624 ... 7 0 -1 0 7 48 287 ... 8 3 12 71 416 2427 14148 ... 10 5 10 45 250 1445 8410 ... 11 8 23 116 659 3824 22271 ... 12 11 36 187 1068 6203 36132 ... 13 14 49 258 1477 8582 49993 ... 14 17 62 329 1886 10961 63854 ... 15 20 75 400 2295 13340 77715 ... 16 23 88 471 2704 15719 91576 ... 17 26 101 542 3113 18098 105437 ... 17 30 129 710 4097 23838 138897 ... ... For n > 1, a(k,n) = 6*a(k,n-1) - a(k,n-2) + G_k where G_k is dependent on k.
Programs
-
Mathematica
highTri = Compile[{{S1,_Integer}},Module[{xS0=0,xS1=S1}, While[xS1-xS0*(xS0+1)/2>xS0,xS0++]; xS0]]; overTri = Compile[{{S2,_Integer}},Module[{xS0=0,xS2=S2}, While[xS2-xS0*(xS0+1)/2>xS0,xS0++]; xS2 - (xS0*(1+xS0)/2)]]; tt = SparseArray[{{12,1} -> 1,{1,12} -> 1}]; K1 = 0; m = 14;While[K1<12,J1=highTri[m*K1];X =2*(m+K1-(J1*2+1)); K2 = 6 K1 - m + X; K3 = 6 K2 - K1 + X;K4 = 6 K3 - K2 + X; o = overTri[m*K1]; tt[[1,K1+1]] =highTri[m*K1]; tt[[2,K1+1]] = highTri[K1*K2-o];tt[[3,K1+1]] = highTri[K2*K3-o];tt[[4,K1+1]] = highTri[K3*K4-o]; K1++];k = 1; While[k<13,z = 1; xx = 99; While[z<5 && xx == 99, If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,Break[]]; If[z == 1,t = -tt[[z,k]]-1;tt[[z,k]] = t,s = -tt[[z-1,k]]-1;tt[[z-1,k]]=s;t =-tt[[z,k]]-1];tt[[z,k]] = t; w = 1;While[w<5 && xx == 99,If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[]];If[w==z,w++]; t=-tt[[w,k]] - 1;tt[[w,k]]=t;If[tt[[1,k]]+ 7 tt[[3,k]] - 7 tt[[2,k]] - tt[[4,k]] == 0,xx =0;Break[], t = -tt[[w,k]] - 1];tt[[w,k]] = t;w++];z++];cc = tt[[1,k]] -6 tt[[2,k]] + tt[[3,k]];p = 5;While[p < 14-k, tt[[p,k]] = 6 tt[[p-1,k]] - tt[[p-2,k]] + cc;p++]; k++]; a=1;list2 = Reap[While[a<11, b=a; While[b>0, Sow[tt[[b, a+1-b]]]; b--]; a++]][[2, 1]];list2
Comments