cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A182116 Carmichael numbers that only have composite XOR couples as defined in A182108.

Original entry on oeis.org

410041, 19384289, 41341321, 43620409, 69331969, 93030145, 122785741, 130032865, 133344793, 133800661, 157731841, 238527745, 334783585, 396262945, 403043257, 413631505, 417241045, 477726145, 490503601, 561777121, 631071001, 686059921, 707926801, 854197345
Offset: 1

Views

Author

Brad Clardy, Apr 12 2012

Keywords

Comments

There are 255 Carmichael numbers below 10^8 but only 6 of them have this property.

Crossrefs

Programs

  • Magma
    XOR := func;
    function IsClardynum(X,i)
      if i eq 1 then
        return true;
      else
        xornum:=2^i - 2;
        xorcouple:=XOR(X,xornum);
        if (IsPrime(xorcouple)) then
           return false;
        else
           return IsClardynum(X,i-1);
        end if;
      end if;
    end function;
    function Korselt(X,n);
    i:=1;
    while IsDefined(X,i) do
       b:=(n-1)mod(X[i]-1);
       if (b ne 0) then return false;
          else i:=i+1;
       end if;
    end while;
    return true;
    end function;
    function IsCarmichael(n);
      if IsPrime(n) then return false;
      end if;
      A:=AssociativeArray();
      if IsSquarefree(n) then
         A:=PrimeDivisors(n);
         if Korselt(A,n) then return true;
            else return false;
         end if;
         else
         return false;
      end if;
    end function;
    for i:=561 to 100000001 by 2 do
        if IsCarmichael(i) then
           if IsClardynum(i,Ilog2(i)) then i;
           end if;
        end if;
    end for;

Extensions

a(11)-a(19) by Brad Clardy, May 10 2014
More terms and b-file (using the Magma program by Brad Clardy and the b-file of Carmichael numbers from A002997) from Jon E. Schoenfield, May 10 2014

A252944 Fermat pseudoprimes that are not Carmichael numbers and have only composite XOR couples as defined in A182108.

Original entry on oeis.org

23377, 31417, 49981, 74665, 220729, 435671, 679729, 769757, 852481, 915981, 1016801, 1023121, 1128121, 1397419, 2008597, 2987167, 3073357, 4014361
Offset: 1

Views

Author

Brad Clardy, Dec 25 2014

Keywords

Comments

There are 433 Fermat pseudoprimes that aren't Carmichael numbers below 2^22, but only 18 have this property. Carmichael numbers that have this property are in A182116.

Crossrefs

Programs

  • Magma
    function IsClardynum(X, i)
      if i eq 1 then
        return true;
      else
        xornum:=2^i - 2;
        xorcouple:=BitwiseXor(X, xornum);
        if (IsPrime(xorcouple)) then
           return false;
        else
           return IsClardynum(X, i-1);
        end if;
      end if;
    end function;
    for n:= 3 to 1052503 by 2 do
      if (IsOne(2^(n-1) mod n)
          and not IsPrime(n)
          and not n mod CarmichaelLambda(n) eq 1
          and IsClardynum(n,Ilog2(n)))
          then n;
      end if;
    end for;

A242435 Number of terms of A182116 between 2^n and 2^(n+1).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 2, 6, 2, 7, 8, 6, 12, 11, 21, 24, 27, 35, 45, 68, 86, 117, 176, 206, 260, 370, 457, 565, 750, 967, 1321, 1531, 1978, 2842, 3723, 4587, 5677, 8354, 10708, 13435, 17259, 23040, 31741, 40146, 48596, 66728, 92193, 112771, 149002, 209890
Offset: 1

Views

Author

Brad Clardy, May 14 2014

Keywords

Comments

This was done with data on Carmichael numbers below 10^21 provided by R. G. E. Pinch, and special computational assistance from William Stein.
There are 16396564 Carmichael numbers below 2^69 but only 849752 have the property of A182116. It looks as though the ratio of Carmichael numbers of this type to normal Carmichael numbers converges to a value around 0.051.

Crossrefs

Showing 1-3 of 3 results.