cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A182129 Number of iterations of the orbit n -> (sum of the decimal digits of n)^n starting with n, needed to stabilize.

Original entry on oeis.org

0, 5, 3, 3, 5, 3, 3, 5, 5, 1, 6, 6, 2, 6, 9, 5, 2, 6, 2, 7, 5, 5, 6, 6, 6, 3, 5, 2, 9, 7, 6, 13, 12, 9, 5, 9, 2, 10, 9, 7, 15, 9, 7, 4, 7, 2, 6, 3, 7, 12, 6, 9, 9, 5, 2, 10, 12, 10, 14, 7, 8, 8, 11, 2, 13, 10, 5, 9, 8, 15, 9, 6, 2, 17, 13, 8, 9, 5, 15, 12
Offset: 1

Views

Author

Michel Lagneau, Apr 13 2012

Keywords

Comments

a(n) is the number of times you form the n-power of the sum of the digits before reaching the last number of the cycle.
Generalization and conjecture: Let k be a positive integer. The number of iterations of the orbit k -> (sum of the decimal digits of k)^n is finite for any exponent n and any starting value k.
Example with n = 17; start with k = 3.
3^17 = 129140163, sum of the decimal digits = 27,
27^17 = 2153693963075557766310747, sum of the decimal digits = 117,
117^17 = 144264558065210807467328187211661877, sum of the decimal digits = 153,
153^17 = 13796036156758195415808856807283698713, sum of the decimal digits = 189,
189^17 = 501014933601411817143935347829544613629, sum of the decimal digits = 153 is already in the trajectory.

Examples

			0 is in the sequence 1^1 -> 1;
For the power 2, a(2) = 5:
    2 ->       2^2 =   4;
    4 ->       4^2 =  16;
   16 ->   (1+6)^2 =  49;
   49 ->   (4+9)^2 = 169;
  169 -> (1+6+9)^2 = 256 is the end of the cycle because 256 -> (2+5+6)^2 = 169 is already in the trajectory. Hence we obtain the map: 2 -> 4 -> 16 -> 49 -> 169 -> 256 with 5 iterations.
		

Crossrefs

Programs

  • Maple
    with(numtheory) : T :=array(1..500) :W:=array(1..500):for n from 1 to 80 do : k:=0:nn:=n:for it from 1 to 50 do:T :=convert(nn,base,10) :l:=nops(T):s1:=sum(T[i],i=1..l):s:=s1^n:k:=k+1:W[k]:=s:nn:=s:od: z:= [seq(W[i],i=1..k)]:V:=convert(z,set):n1:=nops(V): printf(`%d, `,n1):od: