A182172 Number A(n,k) of standard Young tableaux of n cells and height <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 6, 1, 0, 1, 1, 2, 4, 9, 10, 1, 0, 1, 1, 2, 4, 10, 21, 20, 1, 0, 1, 1, 2, 4, 10, 25, 51, 35, 1, 0, 1, 1, 2, 4, 10, 26, 70, 127, 70, 1, 0, 1, 1, 2, 4, 10, 26, 75, 196, 323, 126, 1, 0, 1, 1, 2, 4, 10, 26, 76, 225, 588, 835, 252, 1, 0
Offset: 0
Examples
A(4,2) = 6, there are 6 standard Young tableaux of 4 cells and height <= 2: +------+ +------+ +---------+ +---------+ +---------+ +------------+ | 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 | | 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+ +------+ +------+ +---+ +---+ +---+ Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 1, 1, 1, 1, 1, 1, 1, ... 0, 1, 2, 2, 2, 2, 2, 2, 2, ... 0, 1, 3, 4, 4, 4, 4, 4, 4, ... 0, 1, 6, 9, 10, 10, 10, 10, 10, ... 0, 1, 10, 21, 25, 26, 26, 26, 26, ... 0, 1, 20, 51, 70, 75, 76, 76, 76, ... 0, 1, 35, 127, 196, 225, 231, 232, 232, ... 0, 1, 70, 323, 588, 715, 756, 763, 764, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..80, flattened
- Wikipedia, Young tableau
Crossrefs
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) option remember; `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]), g(n, i-1, l) +`if`(i>n, 0, g(n-i, i, [l[], i]))))) end: A:= (n, k)-> g(n, k, []): seq(seq(A(n, d-n), n=0..d), d=0..15);
-
Mathematica
h[l_List] := Module[{n = Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, l_List] := g[n, i, l] = If[n == 0, h[l], If[i < 1, 0, If[i == 1, h[Join[l, Array[1&, n]]], g [n, i-1, l] + If[i > n, 0, g[n-i, i, Append[l, i]]]]]]; a[n_, k_] := g[n, k, {}]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 15}] // Flatten (* Jean-François Alcover, Dec 06 2013, translated from Maple *)
Formula
Conjecture: A(n,k) ~ k^n/Pi^(k/2) * (k/n)^(k*(k-1)/4) * Product_{j=1..k} Gamma(j/2). - Vaclav Kotesovec, Sep 12 2013
Comments