A230820 Table, read by antidiagonals, of palindromic primes in base b expressed in decimal.
3, 2, 5, 2, 13, 7, 2, 3, 23, 17, 2, 3, 5, 151, 31, 2, 3, 31, 17, 173, 73, 2, 3, 5, 41, 29, 233, 107, 2, 3, 5, 7, 67, 59, 757, 127, 2, 3, 5, 71, 37, 83, 257, 937, 257, 2, 3, 5, 7, 107, 43, 109, 373, 1093, 313, 2, 3, 5, 7, 73, 157, 61, 701, 409, 1249, 443
Offset: 1
Examples
\r b\ .2.3...5...7...17...31...73..107..127...257...313...443..1193..1453..1571.=A016041 .3.2..13..23..151..173..233..757..937..1093..1249..1429..1487..1667..1733.=A029971 .4.2...3...5...17...29...59..257..373...409...461...509...787...839...887.=A029972 .5.2...3..31...41...67...83..109..701...911..1091..1171..1277..1327..1667.=A029973 .6.2...3...5....7...37...43...61...67...191...197..1297..1627..1663..1699.=A029974 .7.2...3...5...71..107..157..257..271...307..2549..2647..2801..3347..3697.=A029975 .8.2...3...5....7...73...89...97..113...211...227...251...349...373...463.=A029976 .9.2...3...5....7..109..127..173..191...227...337...373...419...601...619.=A029977 10.2...3...5....7...11..101..131..151...181...191...313...353...373...383.=A002385 11.2...3...5....7..199..277..421..443...499...521...587...643...709...743.=A029978 12.2...3...5....7...11...13..157..181...193...229...241...277...761...773.=A029979 ... inf..2..3..5..7..11..13..17..19..23..29..31..37..41..43..47..53..59..61...=A000040
Crossrefs
Programs
-
Maple
A230820 := proc(b,n) option remember; local a,dgs ; if n = 1 then if b = 2 then return 3; else return 2; end if; else for a from procname(b,n-1)+1 do if isprime(a) then ispal := true ; dgs := convert(a,base,b) ; for i from 1 to nops(dgs)/2 do if op(i,dgs) <> op(-i,dgs) then ispal := false; end if; end do: if ispal then return a; end if; end if; end do: end if; end proc: for b from 2 to 9 do for n from 1 to 9 do printf("%3d ",A230820(b,n)) ; end do: printf("\n") ; end do; # R. J. Mathar, Feb 16 2014
-
Mathematica
palQ[n_Integer, base_Integer] := Module[{idn = IntegerDigits[ n, base]}, idn == Reverse@ idn]; Table[Select[Prime@Range@500, palQ[#, k + 1] &][[b - k + 1]], {b, 11}, {k, b, 1, -1}] // Flatten