A182287 If n = p*10^i + q*10^(i-1) + r*10^(i-2) + ... in decimal notation, then a(n) = p!*10^i + q!*10^(i-1) + r!*10^(i-2)+ ... .
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 11, 11, 12, 16, 34, 130, 730, 5050, 40330, 362890, 21, 21, 22, 26, 44, 140, 740, 5060, 40340, 362900, 61, 61, 62, 66, 84, 180, 780, 5100, 40380, 362940, 241, 241, 242, 246, 264, 360, 960, 5280, 40560, 363120
Offset: 0
Examples
a(1)=1 because 1!*10^0=1, a(15)=130 because 1!*10^1+5!*10^0=130.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Renzo Remotti, Positional Factorial Sequence
Programs
-
Magma
[n eq 0 select 1 else &+[Factorial(Reverse(Intseq(n))[k])*10^(#Intseq(n)-k): k in [1..#Intseq(n)]]: n in [0..50]]; // Bruno Berselli, May 15 2012
Extensions
Offset changed from 1 to 0 by Bruno Berselli, May 16 2012