cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A283072 Primes of the form x^2 + y^2 such that x^k + y^k is prime for each k = 4, 8, 16, and 32.

Original entry on oeis.org

2, 2823521, 5402681, 6272737, 7641961, 11046193, 11139761, 15785213, 17669153, 20109377, 25855177, 28083953, 37168961, 37681297, 40466033, 41565049, 42025793, 42221269, 42550577, 42911753, 48066173, 52249657, 64377449, 71213257, 76895761, 77051053, 82456481, 85983349, 89197877
Offset: 1

Views

Author

Altug Alkan and Thomas Ordowski, Feb 28 2017

Keywords

Examples

			Prime 5 = 2^2 + 1^2 is not a term since 641 divides 2^32 + 1^32.
Prime 7641961 = 2669^2 + 720^2 is a term since 2669^4 + 720^4, 2669^8 + 720^8, 2669^16 + 720^16, and 2669^32 + 720^32 are prime numbers.
		

Crossrefs

Subsequence of A182313.

Programs

  • PARI
    list(lim)=my(v=List([2]), t); for(a=1, sqrt(lim), forstep(b=1+a%2, min(a, sqrt(lim-a^2)), 2, if(isprime(t=a^2+b^2) && isprime(a^4+b^4) && isprime(a^8+b^8) && isprime(a^16+b^16) && isprime(a^32+b^32), listput(v, t)))); vecsort(Vec(v)) \\ after Charles R Greathouse IV at A182313
Showing 1-1 of 1 results.