A182358 Numbers n for which the number of divisors of n is congruent to 2 mod 4.
2, 3, 5, 7, 11, 12, 13, 17, 18, 19, 20, 23, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 50, 52, 53, 59, 61, 63, 67, 68, 71, 73, 75, 76, 79, 80, 83, 89, 92, 97, 98, 99, 101, 103, 107, 109, 112, 113, 116, 117, 124, 127, 131, 137, 139, 147, 148, 149, 151, 153
Offset: 1
Examples
The divisors of 12 are: 1, 2, 3, 4, 6, 12 [6 divisors]. 6 is congruent to 2 modulo 4. Thus 12 is a member of this sequence.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[200],Mod[DivisorSigma[0,#],4]==2&] (* Harvey P. Dale, Sep 07 2020 *)
-
PARI
{plnt=1 ; for(k=1, 10^7, if(numdiv(k) % 4 == 2, print1(k, ", "); plnt++ ; if(100 < plnt, break() )))}
-
PARI
is(n)=my(p=core(n));isprime(p)&&valuation(n,p)%4==1 \\ Charles R Greathouse IV, Apr 26 2012
-
PARI
list(lim)=my(v=List(),t);forprime(p=2,lim,for(m=1,sqrtint(lim\p), if(m%p==0, next); t=p*m^2; for(n=1,sqrtint(sqrtint(lim\t)), listput(v, t*n^4)))); vecsort(Vec(v),,8) \\ Charles R Greathouse IV, Apr 26 2012
Formula
Terms are of the form p * m^2 * n^4 for any prime p, m coprime to p, and n. - Charles R Greathouse IV, Apr 26 2012
Comments