A182410 Number of length sets of integer partitions of n.
1, 1, 2, 2, 4, 4, 7, 7, 11, 11, 15, 17, 24, 25, 31, 34, 45, 48, 59, 64, 77, 83, 99, 109, 131, 138, 164, 175, 204, 222, 252, 274, 317, 332, 385, 403, 466, 500, 563, 592, 674, 720, 799, 854, 957, 994, 1131, 1196, 1328, 1395, 1551, 1627, 1817, 1912, 2098, 2197
Offset: 0
Keywords
Examples
For n=8 the 11 possible sets are {1}, {2}, {4}, {8}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {1, 6}, {2, 3} and {2, 4}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..170
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, {{}}, `if`(i=1, {{n}}, {b(n, i-1)[], seq(map(x-> {x[], j}, b(n-i*j, i-1))[], j=1..n/i)})) end: a:= n-> nops(b(n, n)): seq(a(n), n=0..50); # Alois P. Heinz, Aug 09 2012
-
Mathematica
Table[Length@ Union@ Map[Union@(Length /@ Split[#]) &, IntegerPartitions[n]], {n, 1, 20}]
-
Python
from sympy.utilities.iterables import partitions def A182410(n): return len({tuple(sorted(set(p.values()))) for p in partitions(n)}) # Chai Wah Wu, Sep 10 2023
Comments